Skip to main content
Log in

Calorimetric determination of fragility in glass forming liquids: Tf vs. Tg-onset methods

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The calorimetric determination of the fragility m-index is compared using the T f and T g-onset methods for typical metallic and molecular glass forming systems of Pd39Ni10Cu30P21, glycerol, triacetin and propylene carbonate. The results are evaluated by referring to the standard m-values determined from the kinetic measurements of the viscosity or structural relaxation time in the supercooled liquid regimes. The m-indexes derived from the T f method are found to generally agree well with the kinetic measurements for all the systems. However, a large deviation is shown between the m-indexes calculated with the T g-onset method and the kinetic results for the fragile liquids of triacetin and propylene carbonate, indicating the calorimetric determination of the fragility m-indexes in terms of the T f method produces less uncertainty.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  ADS  Google Scholar 

  2. I.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).

    Article  ADS  Google Scholar 

  3. V.N. Novikov, Y. Ding, A.P. Sokolov, Phys. Rev. Lett. 71, 061501 (2005).

    Google Scholar 

  4. L.-M. Martinez, C.A. Angell, Nature 410, 5 (2001).

    Article  Google Scholar 

  5. L.-M. Wang, R. Richert, Phys. Rev. Lett. 99, 185701 (2007).

    Article  ADS  Google Scholar 

  6. E. Rössler, A.P. Sokolov, Chem. Geo. 128, 143 (1996).

    Article  Google Scholar 

  7. K.L. Ngai, L.-R. Bao, A.F. Yee, C.L. Soles, Phys. Rev. Lett. 87, 215901 (2001).

    Article  ADS  Google Scholar 

  8. S. Wei, I. Gallino, R. Busch, C.A. Angell, Nat. Phys. 7, 178 (2011).

    Article  Google Scholar 

  9. L.-M. Wang, J. Phys. Chem. B 113, 5168 (2009).

    Article  Google Scholar 

  10. V.N. Novikov, A.P. Sokolov, Philos. Mag. 86, 1567 (2006).

    Article  Google Scholar 

  11. H.X. Gong, M.D. Sun, Z.J. Li, R.P. Liu, Y.J. Tian, L.-M. Wang, Eur. Phys. J. E 34, 86 (2011).

    Article  Google Scholar 

  12. S. Sastry, Nature (London) 409, 164 (2001).

    Article  ADS  Google Scholar 

  13. I. Gallino, J. Schroers, R. Busch, J. Appl. Phys. 108, 063501 (2010).

    Article  ADS  Google Scholar 

  14. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  ADS  Google Scholar 

  15. I.M. Hodge, J. Non-Cryst. Solids 202, 164 (1996).

    Article  ADS  Google Scholar 

  16. M.A. Debolt, A.J. Easteal, P.B. Macedo, C.T. Moynihan, J. Am. Chem. Soc. 59, 16 (1976).

    Google Scholar 

  17. T. Moynihan, A.J. Easteal, M.A. DeBolt, J. Tucker, J. Am. Chem. Soc. 59, 12 (1976).

    Google Scholar 

  18. M.A. DeBolt, A.J. Easteal, J. Wilder, J. Tucker, J. Phys. Chem. 78, 2673 (1974).

    Article  Google Scholar 

  19. Y.Z. Yue, J. de C. Christiansen, S.L. Jensen, Chem. Phys. Lett. 357, 20 (2002).

    Article  ADS  Google Scholar 

  20. Y.Z. Yue, R. von der Ohe, S.L. Jensen, J. Chem. Phys. 121, 11508 (2004).

    Article  ADS  Google Scholar 

  21. X.J. Guo, M. Potuzak, J.C. Mauro, D.C. Allan, T.J. Kiczenski, Y.Z. Yue, J. Non-Cryst. Solids 357, 3230 (2011).

    Article  ADS  Google Scholar 

  22. A.Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946).

    Article  Google Scholar 

  23. Z.M. Chen, Y. Zhao, L.-M. Wang, J. Chem. Phys. 130, 204515 (2009).

    Article  ADS  Google Scholar 

  24. S.Y. Gao, Y.P. Koh, S.L. Simon, Macromolecules 46, 562 (2013).

    Article  ADS  Google Scholar 

  25. A.A. Elabbar, J. Alloys Compd. 476, 125 (2009).

    Article  Google Scholar 

  26. T.A. Waniuk, R. Busch, A. Masuhr, W.L. Johnson, Acta Mater. 46, 5229 (1998).

    Article  Google Scholar 

  27. H.E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  28. J.M. Borrego, A. Conde, S. Roth, J. Eckert, J. Appl. Phys. 92, 2073 (2002).

    Article  ADS  Google Scholar 

  29. E.S. Park, J.H. Na, D.H. Kim, Appl. Phys. Lett. 91, 031907 (2007).

    Article  ADS  Google Scholar 

  30. A. Masuhr, T.A. Waniuk, R. Busch, W.L. Johnson, Phys. Rev. Lett. 82, 2290 (1999).

    Article  ADS  Google Scholar 

  31. W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44, 45 (2004).

    Article  Google Scholar 

  32. Y.F. Guo, A.R. Yavari, T. Zhang, J. Alloy. Compd. S91, 536S (2012).

    Google Scholar 

  33. P. Wen, D.Q. Zhao, M.X. Pan, W.H. Wang, Y.P. Huang, M.L. Guo, Appl. Phys. Lett. 84, 2790 (2004).

    Article  ADS  Google Scholar 

  34. J.M. Pelletier, J. Alloy. Compd. 393, 223 (2005).

    Article  Google Scholar 

  35. L.-M. Wang, W.H. Wang, L.L. Sun, J. Zhang, W.K. Wang, Appl. Phys. Lett. 63, 052201 (2001).

    Google Scholar 

  36. L.-M. Wang, V. Velikov, C.A. Angell, J. Chem. Phys. 117, 10184 (2002).

    Article  ADS  Google Scholar 

  37. Z.M. Chen, D.Y. Bi, L.-M. Wang, Acta Phys.-Chim. Sin. 28, 2023 (2012).

    Google Scholar 

  38. C.A. Angell, L.-M. Wang, Biophys. Chem. 105, 621 (2003).

    Article  Google Scholar 

  39. Y.Z. Yue, J. Non-Cryst. Solids 348, 72 (2004).

    Article  ADS  Google Scholar 

  40. H. Kato, Y. Kawamura, A. Inoue, Appl. Phys. Lett. 73, 3665 (1998) Note that the composition of the alloy is Pd_40.

    Article  ADS  Google Scholar 

  41. V.N. Novikov, A.P. Sokolov, Phys. Rev. B 74, 064203 (2006).

    Article  ADS  Google Scholar 

  42. K. Schröter, E. Donth, J. Chem. Phys. 113, 9101 (2000).

    Article  ADS  Google Scholar 

  43. P. Lunkenheimer, U.R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000).

    Article  ADS  Google Scholar 

  44. J.S. Hutzler, R.J. Colton, A.C. Ling, J. Chem. Eng. Data 17, 324 (1972).

    Article  Google Scholar 

  45. Z.M. Chen, D.Y. Bi, L.-M. Wang, Acta Phys.-Chim. Sin. 28, 2023 (2012).

    Google Scholar 

  46. R. Payne, I.E. Theodorou, J. Phys. Chem. 76, 2892 (1972).

    Article  Google Scholar 

  47. J.R. Huck, G.A. Noyel, L.J. Jorat, A.M. Bondeau, J. Electrost. 12, 221 (1982).

    Article  Google Scholar 

  48. E. Ikada, T. Watanabe, J. Phys. Chem. 78, 1078 (1974).

    Article  Google Scholar 

  49. P. Lunkenheimer, R. Wehn, U. Schneider, A. Loidl, Phys. Rev. Lett. 95, 055702 (2005).

    Article  ADS  Google Scholar 

  50. C.T. Moynihan, S.-K. Lee, M. Tatsumisago, T. Minami, Thermochim. Acta 280/281, 153 (1996).

    Article  Google Scholar 

  51. Z.M. Chen. W.K. Tu, L.M. Wang, unpublished.

  52. Y.Q. Gao, D.Y. Bi, X. Li, R.P. Liu, Y.J. Tian, L.-M. Wang, J. Chem. Phys. 139, 024503 (2013).

    Article  ADS  Google Scholar 

  53. E.S. Park, J.Y. Lee, D.H. Kim, A. Gebert, L. Schutlz, J. Appl. Phys. 104, 023520 (2008).

    Article  ADS  Google Scholar 

  54. E.S. Park, D.H. Kim, Acta Mater. 54, 2597 (2006).

    Article  Google Scholar 

  55. S.W. He, Y. Liu, Z.T. Li, H. Wu, B.Y. Huang, Metall. Mater. Trans. A 39A, 1797 (2008).

    Article  ADS  Google Scholar 

  56. J.C. Qiao, J.M. Pelletier, Q. Wang, W. Jiao, W.H. Wang, Intermetallics 19, 1367 (2011).

    Article  Google Scholar 

  57. P.K. Jain, Deepika, N.S. Saxena, Philos. Mag. 89, 641 (2009).

    Article  ADS  Google Scholar 

  58. S. Kumar, K. Singh, Thermochim. Acta 528, 32 (2012).

    Article  Google Scholar 

  59. S.R. Lukic-Petrovic, M.D. Vuckovac, G.R. Strbac, D.D. Strbac, J. Non-Cryst. Solids 377, 21 (2013).

    Article  ADS  Google Scholar 

  60. W.H. Wang, J. Appl. Phys. 99, 093506 (2006).

    Article  ADS  Google Scholar 

  61. G. He, J. Eckert, M. Hagiwara, J. Appl. Phys. 95, 1816 (2004).

    Article  ADS  Google Scholar 

  62. J.M. Borrego, C.F. Conde, A. Conde, S. Roth, H. Grahl, A. Ostwald, J. Eckert, J. Appl. Phys. 92, 6607 (2002).

    Article  ADS  Google Scholar 

  63. G.J. Fan, J.F. Loffler, R.K. Wunderlich, H.-J. Fecht, Acta Mater. 52, 667 (2004).

    Article  Google Scholar 

  64. A.T. Patel, A. Pratap, J. Therm. Anal. Calorim. 110, 567 (2012).

    Article  Google Scholar 

  65. M.M.A. Imran, D. Bhandari, N.S. Saxena, J. Therm. Anal. Calorim. 65, 257 (2001).

    Article  Google Scholar 

  66. U. Senapati, A.K. Varshneya, J. Non-Cryst. Solids 197, 210 (1996).

    Article  ADS  Google Scholar 

  67. M. Tatsumisago, B.L. Halfpap, J.L. Green, S.M. Lindsay, C.A. Angell, Phys. Rev. Lett. 64, 1549 (1990).

    Article  ADS  Google Scholar 

  68. S. Mukherjee, J. Schroers, Z.H. Zhou, W.L. Johnson, W.K. Rhim, Acta Mater. 52, 3689 (2004).

    Article  Google Scholar 

  69. S. Mukherjee, J. Schroers, W.L. Johnson, W.-K. Rhim, Phys. Rev. Lett. 94, 245501 (2005).

    Article  ADS  Google Scholar 

  70. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  ADS  Google Scholar 

  71. L. Shadowspeaker, R. Busch, Appl. Phys. Lett. 85, 2508 (2004).

    Article  ADS  Google Scholar 

  72. L.-M. Wang, Y.J. Tian, R.P. Liu, R. Richert, J. Phys. Chem. B 114, 3618 (2010).

    Article  Google Scholar 

  73. R. Kumar, P. Sharma, V.S. Rangra, J. Therm. Anal. Calorim. 109, 177 (2012).

    Article  Google Scholar 

  74. I.M. Hodge, Macromolecules 20, 2897 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, Z., Zhang, Y. et al. Calorimetric determination of fragility in glass forming liquids: Tf vs. Tg-onset methods. Eur. Phys. J. E 37, 52 (2014). https://doi.org/10.1140/epje/i2014-14052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14052-y

Keywords

Navigation