Skip to main content
Log in

Field-theoretic description of charge regulation interaction

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In order to find the exact form of the electrostatic interaction between two proteins with dissociable charge groups in aqueous solution, we have studied a model system composed of two macroscopic surfaces with charge dissociation sites immersed in a counterion-only ionic solution. Field-theoretic representation of the grand canonical partition function is derived and evaluated within the mean-field approximation, giving the Poisson-Boltzmann theory with the Ninham-Parsegian boundary condition. Gaussian fluctuations around the mean field are then analyzed in the lowest-order correction that we calculate analytically and exactly, using the path integral representation for the partition function of a harmonic oscillator with time-dependent frequency. The first-order (one loop) free-energy correction gives the interaction free energy that reduces to the zero-frequency van der Waals form in the appropriate limit but in general gives rise to a monopolar fluctuation term due to charge fluctuation at the dissociation sites. Our formulation opens up the possibility to investigate the Kirkwood-Shumaker interaction in more general contexts where their original derivation fails.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kirkwood, J.B. Shumaker, Proc. Natl. Acad. Sci. U.S.A. 38, 855 (1952).

    Article  ADS  Google Scholar 

  2. J. Kirkwood, J.B. Shumaker, Proc. Natl. Acad. Sci. U.S.A. 38, 863 (1952).

    Article  ADS  Google Scholar 

  3. V.A. Parsegian, Van der Waals Forces (Cambridge University Press, Cambridge, 2005).

  4. B.W. Ninham, V.A. Parsegian, J. Theor. Biol. 31, 405 (1973).

    Article  Google Scholar 

  5. M. Lund, B. Jönsson, Q. Rev. Biophys. 46, 265 (2013).

    Article  Google Scholar 

  6. A. Naji, M. Kanduč, J. Forsman, R. Podgornik, J. Chem. Phys. 139, 150901 (2013).

    Article  ADS  Google Scholar 

  7. D. Chan, J.W. Perram, L.R. White, T.W. Healy, J. Chem. Soc., Faraday Trans. 1 71, 1046 (1975).

    Article  Google Scholar 

  8. D. Chan, T.W. Healy, L.R. White, J. Chem. Soc., Faraday Trans. 1 72, 2844 (1976).

    Article  Google Scholar 

  9. N. Boon, R. van Roij, J. Chem. Phys. 134, 054706 (2011).

    Article  ADS  Google Scholar 

  10. R.R. Netz, J. Phys.: Condens. Matter 15, S239 (2003).

    ADS  Google Scholar 

  11. M. Lund, B. Jönsson, Biochemistry 44, 5722 (2005).

    Article  Google Scholar 

  12. F.L.B. da Silva, M. Lund, B. Jonsson, T. Åkesson, J. Phys. Chem. B 110, 4459 (2006).

    Article  Google Scholar 

  13. F.L.B. da Silva, B. Jonsson, Soft Matter 5, 2862 (2009).

    Article  ADS  Google Scholar 

  14. R. Podgornik, B. Zekš, J. Chem. Soc., Faraday Trans. II 84, 611 (1988).

    Article  Google Scholar 

  15. T. Markovich, A. Andelman, R. Podgornik, arXiv: 1305. 3142v1 [cond-mat.soft] (2013).

  16. C.C. Fleck, R.R. Netz, Eur. Phys. J. E 22, 261 (2007).

    Article  Google Scholar 

  17. B.W. Ninham, V.A. Parsegian, J. Theor. Biol. 31, 405 (1970).

    Article  Google Scholar 

  18. C. Fleck, R.R. Netz, H.H. von Grünberg, Biophys. J. 82, 76 (2002).

    Article  ADS  Google Scholar 

  19. I. Borukhov, D. Andelman, H. Orland, Electrochim. Acta 46, 221 (2000).

    Article  Google Scholar 

  20. D. Ben-Yaakov, D. Andelman, R. Podgornik, D. Harries, Curr. Opin. Colloids Interface Sci. 16, 542 (2011).

    Article  Google Scholar 

  21. D. Ben-Yaakov, D. Andelman, R. Podgornik, J. Chem. Phys. 134, 074705-1 (2011).

    Article  ADS  Google Scholar 

  22. D.S. Dean, R.R. Horgan, Phys. Rev. E 65, 061603 (2002).

    Article  ADS  Google Scholar 

  23. C. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer, 1998).

  24. D.C. Khandekar, S.V. Lawande, Phys. Rep. 137, 115 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Podgornik, J. Chem. Phys. 91, 5840 (1989).

    Article  ADS  Google Scholar 

  26. M. Kanduč, R. Podgornik, Eur. Phys. J. E 23, 265 (2007).

    Article  Google Scholar 

  27. A.G. Moreira, R.R. Netz, Europhys. Lett. 52, 705 (2000).

    Article  ADS  Google Scholar 

  28. D. Andelman, in Soft Condensed Matter Physics in Molecular and Cell Biology, edited by W.C.K. Poon, D. Andelman (Taylor & Francis, 2006) pp. 97--122.

  29. R. Podgornik, R.H. French, V.A. Parsegian, J. Chem. Phys. 124, 044709 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Adžić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adžić, N., Podgornik, R. Field-theoretic description of charge regulation interaction. Eur. Phys. J. E 37, 49 (2014). https://doi.org/10.1140/epje/i2014-14049-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14049-6

Keywords

Navigation