Skip to main content

Advertisement

Log in

Shape and energy of a membrane bud induced by protein coats or viral protein assembly

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Intracellular transport vesicles and enveloped virus production is mediated by the polymerization of proteins that form bi-dimensional curved and rigid structures, or “coats”, on a membrane. Using the classical framework of fluid membrane elasticity, we compute numerically the shape and the mechanical energy of the membrane deformation induced by a coat at different stage of growth. We furthermore derive analytical approximate expressions for the membrane shape and energy. They are found to be very accurate when compared to numerical calculations. These analytical expressions should be useful when building a relevant model of coat polymerization kinetics. We also discuss some consequences of the membrane energy features on the coat assembly process, showing that at high tension a kinetically arrested state of incomplete assembly could exist.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, K. Roberts, Molecular Biology of the Cell, 5th edition (Garland Science, 2008).

  2. B. Antonny, Curr. Opin. Cell Biol. 18, 386 (2006).

    Article  Google Scholar 

  3. H.T. McMahon, J.L. Gallop, Nature 438, 590 (2005).

    Article  ADS  Google Scholar 

  4. S.D. Conner, S.L. Schmid, Nature 422, 37 (2003).

    Article  ADS  Google Scholar 

  5. D. Perrais, C.J. Merrifield, Devel. Cell 9, 581 (2005).

    Article  Google Scholar 

  6. V.W. Hsu, S.Y. Lee, J.-S. Yang, Nature Rev. Mol. Cell. Biol. 10, 370 (2009).

    Article  Google Scholar 

  7. H.T. McMahon, I.G. Mills, Curr. Opin. Cell Biol. 16, 379 (2004).

    Article  Google Scholar 

  8. M. Balasubramaniam, E.O. Freed, Physiology 26, 236 (2011).

    Article  Google Scholar 

  9. A. Fotin, Y. Cheng, P. Sliz, N. Grigorieff, S.C. Harrison, T. Kirchhausen, T. Walz, Nature 432, 573 (2004).

    Article  ADS  Google Scholar 

  10. M.A. Edeling, C. Smith, D. Owen, Nature Rev. Mol. Cell Biol. 7, 32 (2006).

    Article  Google Scholar 

  11. S.M. Stagg, C. Gürkan, D.M. Fowler, P. LaPointe, T.R. Foss, C.S. Potter, B. Carragher, W.E. Balch, Nature 439, 234 (2006).

    Article  ADS  Google Scholar 

  12. K. Matsuoka, R. Schekman, L. Orci, J.E. Heuser, Proc. Natl. Acad. Sci. U.S.A. 98, 13709 (2001).

    Article  ADS  Google Scholar 

  13. J.A.G. Briggs, J.D. Riches, B. Glass, V. Bartonov, G. Zanetti, H.-G. Kraüsslich, Proc. Natl. Acad. Sci. U.S.A. 106, 11090 (2009).

    Article  ADS  Google Scholar 

  14. M. Ehrlich, W. Boll, A. van Oijen, R. Hariharan, K. Chandran, M.L. Nibert, T. Kirchhausen, Cell 118, 591 (2004).

    Article  Google Scholar 

  15. N. Jouvenet, P. D. Bieniasz, S.M. Simon, Nature 454, 236 (2008).

    Article  ADS  Google Scholar 

  16. N. Jouvenet, S.M. Simon, P.D. Bieniasz, J. Mol. Biology 410, 501 (2011).

    Article  Google Scholar 

  17. J. Gunzenhaüser, N. Olivier, T. Pengo, S. Manley, Nano Lett. 12, 4701 (2012).

    Article  ADS  Google Scholar 

  18. J.-B. Manneville, J.-F. Casella, E. Ambroggio, P. Gounon, J. Bertherat, P. Bassereau, J. Cartaud, B. Antonny, B. Goud, Proc. Natl. Acad. Sci. U.S.A. 110, 13244 (2013).

    Article  Google Scholar 

  19. A.R. Thiam, B. Antonny, J. Wang, J. Delacotte, F. Wilfling, T.C. Wather, R. Beck, J.E. Rothman, F. Pincet, Proc. Natl. Acad. Sci. U.S.A. 105, 16946 (2008).

    Article  Google Scholar 

  20. L. Foret, P. Sens, Proc. Natl. Acad. Sci. U.S.A. 105, 14763 (2008).

    Article  ADS  Google Scholar 

  21. P. Sens, M.S. Turner, Phys. Rev. E 73, 031918 (2006).

    Article  ADS  Google Scholar 

  22. R. Zhang, T.T. Nguyen, Phys. Rev. E 78, 051903 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Deserno, Phys. Rev. E 69, 031903 (2004).

    Article  ADS  Google Scholar 

  24. M.K. Higgins, H.T. McMahon, Trends Biochem. Sci. 27, 257 (2002).

    Article  Google Scholar 

  25. L.-A. Carlson et al., PLoS Pathogens 6, e1001173 (2010).

    Article  Google Scholar 

  26. T. Kirchhausen, Trends Cell Biol. 19, 596 (2009).

    Article  Google Scholar 

  27. F. Jülicher, U. Seifert, Phys. Rev. E 49, 4728 (1994).

    Article  ADS  Google Scholar 

  28. U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991).

    Article  ADS  Google Scholar 

  29. S.A. Safran, Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes (Westview Press, 2003).

  30. I. Derényi, F. Jülicher, J. Prost, Phys. Rev. Lett. 89, 209901 (2002).

    Article  ADS  Google Scholar 

  31. A. Upadhyaya, M.P. Sheetz, Biophys. J. 86, 2923 (2004).

    Article  ADS  Google Scholar 

  32. C.E. Morris, U. Homann, J. Membr. Biol. 179, 79 (2001).

    Google Scholar 

  33. B. Sinha et al., Cell 144, 402 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Foret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foret, L. Shape and energy of a membrane bud induced by protein coats or viral protein assembly. Eur. Phys. J. E 37, 42 (2014). https://doi.org/10.1140/epje/i2014-14042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14042-1

Keywords

Navigation