Skip to main content
Log in

Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Many studies in the last decade have revealed that patterns at the microscale can reduce skin drag. Yet, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model turbulent flow over patterned surfaces. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Kármán) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, E. Charlaix, Nat. Mater. 2, 237 (2003).

    Article  ADS  Google Scholar 

  2. P. Joseph, C. Cottin-Bizonne, J.-M. Benoit, C. Ybert, C. Journet, P. Tabeling, L. Bocquet, Phys. Rev. Lett. 97, 156104 (2006).

    Article  ADS  Google Scholar 

  3. C.-H. Choi, U. Ulmanella, J. Kim, Phys. Fluids 18, 087105 (2006).

    Article  ADS  Google Scholar 

  4. C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, L. Bocquet, Phys. Fluids 19, 123601 (2007).

    Article  ADS  Google Scholar 

  5. C. Lee, C.-H. Choi, C.-J. Kim, Phys. Rev. Lett. 101, 064501 (2008).

    Article  ADS  Google Scholar 

  6. L. Sirovich, S. Karlsson, Nature 388, 753 (1997).

    Article  ADS  Google Scholar 

  7. R.J. Daniello, N.E. Waterhouse, J.P. Rothestein, Phys. Fluids 21, 085103 (2009).

    Article  ADS  Google Scholar 

  8. J.P. Rothstein, Annu. Rev. Fluid Mech. 42, 89 (2010).

    Article  ADS  Google Scholar 

  9. L. Boucquet, E. Lauga, Nat. Mater. 10, 334 (2011).

    Article  ADS  Google Scholar 

  10. E. Lauga, H.A. Stone, J. Fluid Mech. 489, 55 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. A.M.J. Davis, E. Lauga, J. Fluid Mech. 661, 402 (2010).

    Article  ADS  MATH  Google Scholar 

  12. T.G. Min, J. Kim, Phys. Fluids 16, L55 (2004).

    Article  ADS  Google Scholar 

  13. M.B. Martell, J.B. Perot, J.P. Rothestein, J. Fluid Mech. 620, 31 (2009).

    Article  ADS  MATH  Google Scholar 

  14. I. Battiato, P.R. Bandaru, D.M. Tartakovsky, Phys. Rev. Lett. 105, 144504 (2010).

    Article  ADS  Google Scholar 

  15. I. Battiato, J. Fluid Mech. 699, 94 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. J.-L. Auriault, Transp. Porous Med. 79, 215 (2009).

    Article  MathSciNet  Google Scholar 

  17. J. Ochoa-Tapia, S. Whitaker, Intl. J. Heat Mass Transfer 38, 2635 (1995).

    Article  MATH  Google Scholar 

  18. M. Cieszko, J. Kubik, Transp. Porous Med. 34, 319 (1999).

    Article  Google Scholar 

  19. W. Jäger, A. Mikelić, SIAM J. Appl. Math. 60, 1111 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Weinbaum, X. Zhang, Y. Han, H. Vink, S.C. Cowin, Proc. Natl. Acad. Sci. U.S.A. 100, 7988 (2003).

    Article  ADS  Google Scholar 

  21. M. Le Bars, M. Grae Worster, J. Fluid Mech. 550, 149 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. H.C. Brinkman, Appl. Sci. Res. A 1, 27 (1947).

    Article  Google Scholar 

  23. K. Fukagata, N. Kasagi, P. Koumoutsakos, Phys. Fluids 18, 051703 (2006).

    Article  ADS  Google Scholar 

  24. I.P. Castro, J. Fluid Mech. 585, 469 (2007).

    Article  ADS  MATH  Google Scholar 

  25. Ch. Brücher, J. Phys.: Condens. Matter 184120, 1 (2011).

    Google Scholar 

  26. D. Venkataraman, A. Bottaro, Phys. Fluids 24, 093601 (2012).

    Article  ADS  Google Scholar 

  27. T.-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.d. Hatton, A. Grinthal, J. Aizenberg, Nature 447, 443 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilenia Battiato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battiato, I. Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows. Eur. Phys. J. E 37, 19 (2014). https://doi.org/10.1140/epje/i2014-14019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14019-0

Keywords

Navigation