Skip to main content
Log in

Energy non-equipartition in strongly convective granular systems

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Using positron emission particle tracking, the effects of convective motion and the resulting segregative behaviour on the partition of kinetic energy between the components of a bidisperse granular system are, for the first time, systematically investigated. It is found that the distribution of energy between the two system components, which are equal in size but differ in their material properties, is strongly dependent on the degree of segregation observed in the granular bed. The results obtained demonstrate that the difference in energy obtained by dissimilar particle species is not an innate property of the materials in question, but can in fact be altered through variation of the relevant system parameters. The existence of a relationship between the convective and segregative properties of a granular system and the degree of energy equipartition within the system implies the possibility of extending existing theory into the convective regime. Thus, our findings represent an incremental step towards the definition of a granular analogy to temperature that can be applied to more generalised systems and, through this, an improved understanding of inhomogeneous granular systems in general.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Phys. Today 49, 32 (1996)

    Article  Google Scholar 

  2. R.L. Brown, J. Inst. Fuel 13, 15 (1939)

    Google Scholar 

  3. C.S. Campbell, J. Fluid Mech. 348, 85 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. S. Warr, J.M. Huntley, G.T.H. Jacques, Phys. Rev. E 52, 5583 (1995)

    Article  ADS  Google Scholar 

  5. S. Ogawa, in Proceedings of the US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, edited by S.C. Cowin, M. Satake (Gakujutsu Bunker Fukyukai, Tokyo, Japan, 1978)

  6. C.H. Liu, S.R. Nagel, D.A. Schecter, S.N. Coppersmith, S. Majumdar, O. Narayan, T.A. Witten, Science 269, 513 (1995)

    Article  ADS  Google Scholar 

  7. I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993)

    Article  ADS  Google Scholar 

  8. A. Kudrolli, J. Henry, Phys. Rev. E 62, R1489 (2000)

    Article  ADS  Google Scholar 

  9. K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002)

    Article  ADS  Google Scholar 

  10. R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002)

    Article  ADS  Google Scholar 

  11. H. Wang, G. Jin, Y. Ma, Phys. Rev. E 68, 031301 (2003)

    Article  ADS  Google Scholar 

  12. D. Paolotti, C. Cattuto, U. Marini Bettolo Marconi, A. Puglisi, Granular Matter 5, 75 (2003)

    Article  Google Scholar 

  13. A. Barrat, E. Trizac, Phys. Rev. E 66, 051303 (2002)

    Article  ADS  Google Scholar 

  14. J. Javier Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. Lett. 95, 098001 (2005)

    Article  ADS  Google Scholar 

  15. H. Wang, N. Menon, Phys. Rev. Lett. 100, 158001 (2008)

    Article  ADS  Google Scholar 

  16. J.B. Knight, H.M. Jaeger, S.R. Nagel, Phys. Rev. Lett. 70, 3728 (1993)

    Article  ADS  Google Scholar 

  17. K. Ahmad, I.J. Smalley, Powder Technol. 8, 69 (1973)

    Article  Google Scholar 

  18. R Ramirez, D Risso, P Cordero, Phys. Rev. Lett. 85, 1230 (2000)

    Article  ADS  Google Scholar 

  19. K.M. Aoki, T. Akiyama, Y. Maki, T. Watanabe, Phys. Rev. E 54, 874 (1996)

    Article  ADS  Google Scholar 

  20. S.C. Yang, Powder Technol. 164, 65 (2006)

    Article  Google Scholar 

  21. C.R.K. Windows-Yule, T. Weinhart, D.J. Parker, A.R. Thornton, Phys. Rev. E 89, 022202 (2014)

    Article  ADS  Google Scholar 

  22. C. Zeilstra, M.A. Van Der Hoef, J.A.M. Kuipers, Phys. Rev. E 77, 031309 (2008)

    Article  ADS  Google Scholar 

  23. Q. Shi, G. Sun, M. Hou, K. Lu, Phys. Rev. E 75, 061302 (2007)

    Article  ADS  Google Scholar 

  24. R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. Lett. 86, 3304 (2001)

    Article  ADS  Google Scholar 

  25. J. Talbot, P. Viot, Phys. Rev. Lett. 89, 064301 (2002)

    Article  ADS  Google Scholar 

  26. C.R.K. Windows-Yule, N. Rivas, D.J. Parker, Phys. Rev. Lett. 111, 038001 (2013)

    Article  ADS  Google Scholar 

  27. D.J. Parker, R.N. Forster, P. Fowles, P.S. Takhar, Nucl. Instrum. Methods Phys. Res. A 477, 540 (2002)

    Article  ADS  Google Scholar 

  28. R.D. Wildman, J.M. Huntley, J.-P. Hansen D.J. Parker, D.A. Allen, Phys. Rev. E 62, 3826 (2000)

    Article  ADS  Google Scholar 

  29. D.V. Khakhar, J.J. McCarthy, T. Shinbrot, J.M. Ottino, Phys. Fluids 9, 31 (1997)

    Article  ADS  Google Scholar 

  30. V Garzó, J. Dufty, Phys. Rev. E 60, 5706 (1999)

    Article  ADS  Google Scholar 

  31. S. Hsiau, C. Liao, P. Sheng, S. Tai, Exp. Fluids 51, 795 (2011)

    Article  Google Scholar 

  32. J.S. Olafsen, J.S. Urbach, Phys. Rev. Lett. 81, 4369 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. K. Windows-Yule.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windows-Yule, C.R.K., Parker, D.J. Energy non-equipartition in strongly convective granular systems. Eur. Phys. J. E 37, 17 (2014). https://doi.org/10.1140/epje/i2014-14017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14017-2

Keywords

Navigation