Skip to main content

Active polar fluid flow in finite droplets

Abstract.

We present a continuum level analytical model of a droplet of active contractile fluid consisting of filaments and motors. We calculate the steady state flows that result from a splayed polarisation of the filaments. We account for interaction with the external medium by imposing a viscous friction at the fixed droplet boundary. We then show that the droplet has non-zero force dipole and quadrupole moments, the latter of which is essential for self-propelled motion of the droplet at low Reynolds' number. Therefore, this calculation describes a simple mechanism for the motility of a droplet of active contractile fluid embedded in a three-dimensional environment, which is relevant to cell migration in confinement (for example, embedded within a gel or tissue). Our analytical results predict how the system depends on various parameters such as the effective friction coefficient, the phenomenological activity parameter and the splay of the imposed polarisation.

Graphical abstract

References

  1. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  2. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

    Article  ADS  Google Scholar 

  4. K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)

    Article  ADS  Google Scholar 

  5. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004)

    Article  ADS  Google Scholar 

  6. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005)

    Article  Google Scholar 

  7. J.F. Joanny, J. Prost, Human. Front. Sci. Prog. J. 3, 94 (2009)

    Google Scholar 

  8. D. Mizuno, C. Tardin, C. Schmidt, F. MacKintosh, Science 315, 370 (2007)

    Article  ADS  Google Scholar 

  9. F.C. Mackintosh, C.F. Schmidt, Curr. Opin. Cell Biol. 22, 29 (2010)

    Article  Google Scholar 

  10. M.S. e Silva, M. Depken, B. Stuhrmann, M. Korsten, F.C. MacKintosh, G.H. Koenderink, Proc. Natl. Acad. Sci. U.S.A. 108, 9408 (2011)

    Article  ADS  Google Scholar 

  11. S. Köhler, V. Schaller, A.R. Bausch, PloS one 6, e23798 (2011)

    Article  ADS  Google Scholar 

  12. S. Köhler, A.R. Bausch, PloS one 7, e39869 (2012)

    Article  ADS  Google Scholar 

  13. R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)

    Article  ADS  Google Scholar 

  14. G. Charras, E. Paluch, Nat. Rev. Mol. Cell Biol. 9, 730 (2008)

    Article  Google Scholar 

  15. R.J. Hawkins, M. Piel, G. Faure-Andre, A.M. Lennon-Dumenil, J.F. Joanny, J. Prost, R. Voituriez, Phys. Rev. Lett. 102, 058103 (2009)

    Article  ADS  Google Scholar 

  16. K. Konstantopoulos, P.H. Wu, D. Wirtz, Biophys. J. 104, 279 (2013)

    Article  Google Scholar 

  17. R. Poincloux, O. Collin, F. Lizárraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Proc. Natl. Acad. Sci. U.S.A. 108, 1943 (2011)

    Article  ADS  Google Scholar 

  18. M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. de Vries, D.F. Legler, S.A. Luther, T. Bollenbach, M. Sixt, Science 339, 328 (2013)

    Article  ADS  Google Scholar 

  19. E. Tjhung, D. Marenduzzo, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 109, 12381 (2012)

    Article  ADS  Google Scholar 

  20. C. Blanch-Mercader, J. Casademunt, Phys. Rev. Lett. 110, 078102 (2013)

    Article  ADS  Google Scholar 

  21. D. Shao, W.J. Rappel, H. Levine, Phys. Rev. Lett. 105, 108104 (2010)

    Article  ADS  Google Scholar 

  22. F. Ziebert, S. Swaminathan, I.S. Aranson, J. R. Soc. Interface 9, 1084 (2011)

    Article  Google Scholar 

  23. T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)

    Article  ADS  Google Scholar 

  24. C.M. Coppin, P.C. Leavis, Biophys. J. 63, 794 (1992)

    Article  ADS  Google Scholar 

  25. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)

  26. H. Pleiner, H. Brand, Europhys. Lett. 9, 243 (1989)

    Article  ADS  Google Scholar 

  27. S. Fürthauer, M. Neef, S. Grill, K. Kruse, F. Jülicher, New J. Phys. 14, 023001 (2012)

    Article  Google Scholar 

  28. P.M. Bendix, G.H. Koenderink, D. Cuvelier, Z. Dogic, B.N. Koeleman, W.M. Brieher, C.M. Field, L. Mahadevan, D.A. Weitz, Biophys. J. 94, 3126 (2008)

    Article  ADS  Google Scholar 

  29. R. Voituriez, J.F. Joanny, J. Prost, Phys. Rev. Lett. 96, 028102 (2006)

    Article  ADS  Google Scholar 

  30. R.J. Hawkins, R. Poincloux, O. Bénichou, M. Piel, P. Chavrier, R. Voituriez, Biophys. J. 101, 1041 (2011)

    Article  Google Scholar 

  31. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th edition (Garland Science, New York, 2008)

  32. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, Phys. Biol. 3, 130 (2006)

    Article  ADS  Google Scholar 

  33. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, J. Ks, Phys. Rev. Lett. 94, 098103 (2005)

    Article  ADS  Google Scholar 

  34. O. Thoumine, O. Cardoso, J.J. Meister, Eur. Biophys. J. 28, 222 (1999)

    Article  Google Scholar 

  35. J. Dai, M.P. Sheetz, Biophys. J. 77, 3363 (1999)

    Article  Google Scholar 

  36. N. Yoshinaga, arXiv preprint arXiv:1307.3120 (2013)

  37. H.A. Stone, A.D. Samuel, Phys. Rev. Lett. 77, 4102 (1996)

    Article  ADS  Google Scholar 

  38. J. Blake, J. Fluid Mech 46, 199 (1971)

    Article  MATH  ADS  Google Scholar 

  39. F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)

    Article  ADS  Google Scholar 

  40. I.S. Aranson, L.S. Tsimring, Phys. Rev. E 74, 031915 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  41. F. Nédélec, J. Cell Biol. 158, 1005 (2002)

    Article  Google Scholar 

  42. D.A. Head, G. Gompper, W.J. Briels, Soft Matter 7, 3116 (2011)

    Article  ADS  Google Scholar 

  43. F.J. Nédélec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)

    Article  ADS  Google Scholar 

  44. T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Science 292, 1167 (2001)

    Article  ADS  Google Scholar 

  45. L. Laan, N. Pavin, J. Husson, G. Romet-Lemonne, M. van Duijn, M.P. López, R.D. Vale, F. Jülicher, S.L. Reck-Peterson, M. Dogterom, Cell 148, 502 (2012)

    Article  Google Scholar 

  46. Maple-16 (2012) Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, Canada

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl A. Whitfield.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

A. Whitfield, C., Marenduzzo, D., Voituriez, R. et al. Active polar fluid flow in finite droplets. Eur. Phys. J. E 37, 8 (2014). https://doi.org/10.1140/epje/i2014-14008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14008-3

Keywords

  • Living systems: Biological Matter