Abstract.
We present a continuum level analytical model of a droplet of active contractile fluid consisting of filaments and motors. We calculate the steady state flows that result from a splayed polarisation of the filaments. We account for interaction with the external medium by imposing a viscous friction at the fixed droplet boundary. We then show that the droplet has non-zero force dipole and quadrupole moments, the latter of which is essential for self-propelled motion of the droplet at low Reynolds' number. Therefore, this calculation describes a simple mechanism for the motility of a droplet of active contractile fluid embedded in a three-dimensional environment, which is relevant to cell migration in confinement (for example, embedded within a gel or tissue). Our analytical results predict how the system depends on various parameters such as the effective friction coefficient, the phenomenological activity parameter and the splay of the imposed polarisation.
Graphical abstract

Article PDF
References
S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)
J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)
V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)
K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)
K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004)
K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005)
J.F. Joanny, J. Prost, Human. Front. Sci. Prog. J. 3, 94 (2009)
D. Mizuno, C. Tardin, C. Schmidt, F. MacKintosh, Science 315, 370 (2007)
F.C. Mackintosh, C.F. Schmidt, Curr. Opin. Cell Biol. 22, 29 (2010)
M.S. e Silva, M. Depken, B. Stuhrmann, M. Korsten, F.C. MacKintosh, G.H. Koenderink, Proc. Natl. Acad. Sci. U.S.A. 108, 9408 (2011)
S. Köhler, V. Schaller, A.R. Bausch, PloS one 6, e23798 (2011)
S. Köhler, A.R. Bausch, PloS one 7, e39869 (2012)
R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)
G. Charras, E. Paluch, Nat. Rev. Mol. Cell Biol. 9, 730 (2008)
R.J. Hawkins, M. Piel, G. Faure-Andre, A.M. Lennon-Dumenil, J.F. Joanny, J. Prost, R. Voituriez, Phys. Rev. Lett. 102, 058103 (2009)
K. Konstantopoulos, P.H. Wu, D. Wirtz, Biophys. J. 104, 279 (2013)
R. Poincloux, O. Collin, F. Lizárraga, M. Romao, M. Debray, M. Piel, P. Chavrier, Proc. Natl. Acad. Sci. U.S.A. 108, 1943 (2011)
M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. de Vries, D.F. Legler, S.A. Luther, T. Bollenbach, M. Sixt, Science 339, 328 (2013)
E. Tjhung, D. Marenduzzo, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 109, 12381 (2012)
C. Blanch-Mercader, J. Casademunt, Phys. Rev. Lett. 110, 078102 (2013)
D. Shao, W.J. Rappel, H. Levine, Phys. Rev. Lett. 105, 108104 (2010)
F. Ziebert, S. Swaminathan, I.S. Aranson, J. R. Soc. Interface 9, 1084 (2011)
T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)
C.M. Coppin, P.C. Leavis, Biophys. J. 63, 794 (1992)
P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)
H. Pleiner, H. Brand, Europhys. Lett. 9, 243 (1989)
S. Fürthauer, M. Neef, S. Grill, K. Kruse, F. Jülicher, New J. Phys. 14, 023001 (2012)
P.M. Bendix, G.H. Koenderink, D. Cuvelier, Z. Dogic, B.N. Koeleman, W.M. Brieher, C.M. Field, L. Mahadevan, D.A. Weitz, Biophys. J. 94, 3126 (2008)
R. Voituriez, J.F. Joanny, J. Prost, Phys. Rev. Lett. 96, 028102 (2006)
R.J. Hawkins, R. Poincloux, O. Bénichou, M. Piel, P. Chavrier, R. Voituriez, Biophys. J. 101, 1041 (2011)
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th edition (Garland Science, New York, 2008)
K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, Phys. Biol. 3, 130 (2006)
F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, J. Ks, Phys. Rev. Lett. 94, 098103 (2005)
O. Thoumine, O. Cardoso, J.J. Meister, Eur. Biophys. J. 28, 222 (1999)
J. Dai, M.P. Sheetz, Biophys. J. 77, 3363 (1999)
N. Yoshinaga, arXiv preprint arXiv:1307.3120 (2013)
H.A. Stone, A.D. Samuel, Phys. Rev. Lett. 77, 4102 (1996)
J. Blake, J. Fluid Mech 46, 199 (1971)
F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)
I.S. Aranson, L.S. Tsimring, Phys. Rev. E 74, 031915 (2006)
F. Nédélec, J. Cell Biol. 158, 1005 (2002)
D.A. Head, G. Gompper, W.J. Briels, Soft Matter 7, 3116 (2011)
F.J. Nédélec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)
T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Science 292, 1167 (2001)
L. Laan, N. Pavin, J. Husson, G. Romet-Lemonne, M. van Duijn, M.P. López, R.D. Vale, F. Jülicher, S.L. Reck-Peterson, M. Dogterom, Cell 148, 502 (2012)
Maple-16 (2012) Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, Canada
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
A. Whitfield, C., Marenduzzo, D., Voituriez, R. et al. Active polar fluid flow in finite droplets. Eur. Phys. J. E 37, 8 (2014). https://doi.org/10.1140/epje/i2014-14008-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2014-14008-3