Skip to main content
Log in

On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Simulating flow of a Bingham fluid in porous media still remains a challenging task as the yield stress may significantly alter the numerical stability and precision. We present a Lattice-Boltzmann TRT scheme that allows the resolution of this type of flow in stochastically reconstructed porous media. LB methods have an intrinsic error associated to the boundary conditions. Depending on the schemes this error might be directly linked to the effective viscosity. As for non-Newtonian fluids viscosity varies in space the error becomes inhomogeneous and very important. In contrast to that, the TRT scheme does not present this deficiency and is therefore adequate to be used for simulations of non-Newtonian fluid flow. We simulated Bingham fluid flow in porous media and determined a generalized Darcy equation depending on the yield stress, the effective viscosity, the pressure drop and a characteristic length of the porous medium. By evaluating the flow in the porous structure, we distinguished three different scaling regimes. Regime I corresponds to the situation where fluid is flowing in only one channel. Here, the relation between flow rate and pressure drop is given by the non-Newtonian Poiseuille law. During Regime II an increase in pressure triggers the opening of new paths and the relation between flow rate and the difference in pressure to the critical yield pressure becomes quadratic: \(q \propto \left( {\tilde d_p - \tilde d_{p_c } } \right)^2\). Finally, Regime III corresponds to the situation where all the fluid is flowing. In this case, \(q \propto \left( {\tilde d_p - \tilde d_{p_c } } \right)\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Barenblatt, V. Entov, V. Ryzhik, Theory of fluid flows through natural rocks (Norwell, MA (USA).

  2. W.R. Rossen, J. Colloid Interface Sci. 136, 1 (1990).

    Article  Google Scholar 

  3. S. Roux, H.J. Herrmann, Europhys. Lett. 4, 1227 (1987).

    Article  ADS  Google Scholar 

  4. C.B. Shah, Y.C. Yortsos, AIChE J. 41, 1099 (1995).

    Article  Google Scholar 

  5. M.T. Balhoff, K.E. Thompson, AIChE J. 50, 3034 (2004).

    Article  Google Scholar 

  6. M. Chen, W. Rossen, Y.C. Yortsos, Chem. Eng. Sci. 60, 4183 (2005).

    Article  Google Scholar 

  7. T. Sochi, M.J. Blunt, J. Petrol. Sci. Engin. 60, 105 (2008).

    Article  Google Scholar 

  8. T. Sochi, Polymer 51, 5007 (2010).

    Article  Google Scholar 

  9. M. Balhoff, D. Sanchez-Rivera, A. Kwok, Y. Mehmani, M. Prodanović, Transport Porous Media 93, 363 (2012).

    Article  Google Scholar 

  10. H. Park, M. Hawley, R. Blanks, SPE (11), 4722 (1973).

  11. T. Al-Fariss, K.L. Pinder, Cana. J. Chem. Engin. 65, 391 (1987).

    Article  Google Scholar 

  12. G.G. Chase, P. Dachavijit, Sep. Sci. Technol. 38, 745 (2003).

    Article  Google Scholar 

  13. X. Clain, Ph.D. thesis, Université Paris-Est (2010).

  14. D. Rothman, Geophysics 53, 509 (1988).

    Article  ADS  Google Scholar 

  15. S. Succi, E. Foti, F. Higuera, Europhys. Lett. 10, 433 (1989).

    Article  ADS  Google Scholar 

  16. Y. Qian, D. D’Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992).

    Article  ADS  MATH  Google Scholar 

  17. L. Talon, J. Martin, N. Rakotomalala, D. Salin, Y. Yortsos, Water Resour. Res. 39, 1135 (2003).

    ADS  Google Scholar 

  18. L. Talon, J. Martin, N. Rakotomalala, D. Salin, Y. Yortsos, Phys. Rev. E 69, 066318 (2004).

    Article  ADS  Google Scholar 

  19. L. Talon, D. Bauer, N. Gland, S. Youssef, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526 (2012).

    ADS  Google Scholar 

  20. E. Aharonov, D.H. Rothman, Geophys. Res. Lett. 20, 679 (1993).

    Article  ADS  Google Scholar 

  21. S. Gabbanelli, G. Drazer, J. Koplik, Phys. Rev. E 72, 046312 (2005).

    Article  ADS  Google Scholar 

  22. J. Psihogios, M. Kainourgiakis, A. Yiotis, A. Papaioannou, A. Stubos, Transport Porous Media 70, 279 (2007).

    Article  MathSciNet  Google Scholar 

  23. A. Vikhansky, J. Non-Newtonian Fluid Mech. 155, 95 (2008).

    Article  MATH  Google Scholar 

  24. I. Ginzburg, K. Steiner, Philos. Trans. R. Soc. London, Ser. A 360, 453 (2002).

    Article  ADS  MATH  Google Scholar 

  25. S. Sinha, A. Hansen, EPL 99, 44004 (2012).

    Article  Google Scholar 

  26. T.C. Papanastasiou, J. Rheol. 31, 385 (1987).

    Article  ADS  MATH  Google Scholar 

  27. I. Ginzburg, J. Stat. Phys. 126, 157 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008).

    MathSciNet  Google Scholar 

  29. I. Ginzburg, Phys. Rev. E 77, 066704 (2008).

    Article  ADS  Google Scholar 

  30. D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Pan, L.S. Luo, C.T. Miller, Comput. Fluids 35, 898 (2006).

    Article  MATH  Google Scholar 

  32. A.G. Yiotis, L. Talon, D. Salin, Phys. Rev. E 87, 033001 (2013).

    Article  ADS  Google Scholar 

  33. T. Chevalier, C. Chevalier, X. Clain, J. Dupla, J. Canou, S. Rodts, P. Coussot, J. Non-Newtonian Fluid Mech. 195, 57 (2013).

    Article  Google Scholar 

  34. M. Kardar, Y.C. Zhang, Phys. Rev. Lett. 58, 2087 (1987).

    Article  ADS  Google Scholar 

  35. L. Talon, H. Auradou, M. Pessel, A. Hansen, EPL 103, 30003 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Talon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talon, L., Bauer, D. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme. Eur. Phys. J. E 36, 139 (2013). https://doi.org/10.1140/epje/i2013-13139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13139-3

Keywords

Navigation