Skip to main content
Log in

Convolution theory for dynamic systems: A bottom-up approach to the viscoelasticity of polymeric networks

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Biological materials such as the cytoskeleton are characterized by remarkable viscoelastic properties and therefore represent the subject of numerous micro- and macrorheological experimental studies. By generalizing the previously introduced dynamic convolution theory (DCT) to two dimensions, we devise a bottom-up approach for the viscoelastic properties of extended, crosslinked semiflexible polymer networks. Brownian dynamics (BD) simulations serve to determine the dynamic linear self- and cross-response properties of isolated semiflexible polymers to externally applied forces and torques; these response functions are used as input to the DCT. For a given network topology, the frequency-dependent response of the network subject to a given external force/torque distribution is calculated via the DCT allowing to resolve both micro- and macrorheological properties of the networks. A mapping on continuum viscoelastic theory yields the corresponding viscoelastic bulk moduli. Special attention is drawn to the flexibility of crosslinkers, which couple angular degrees of freedom at the network nodes and which are found to sensitively affect the resulting rheological properties of the polymeric meshwork.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Srivastava, R.B. Halevi, A. Veksler, R. Granek, Proteins 80, 2692 (2012).

    Article  Google Scholar 

  2. L.H. Deng, X. Trepat, J.P. Butler, E. Millet, K.G. Morgan, D.A. Weitz, J.J. Fredberg, Nat. Mater. 5, 636 (2006).

    Article  ADS  Google Scholar 

  3. A.R. Bausch, K. Kroy, Nat. Phys. 2, 231 (2006).

    Article  Google Scholar 

  4. H.J. Gao, Int. J. Fracture 138, 101 (2006).

    Article  MATH  Google Scholar 

  5. D.T.N. Chen, Q. Wen, P.A. Janmey, J.C. Crocker, A.G. Yodh, Annu. Rev. Condens. Matter Phys. 1, 301 (2010).

    Article  ADS  Google Scholar 

  6. I. Reviakine, D. Johannsmann, R.P. Richter, Anal. Chem. 83, 8838 (2011).

    Article  Google Scholar 

  7. A. Basu, Q. Wen, X.M. Mao, T.C. Lubensky, P.A. Janmey, A.G. Yodh, Macromolecules 44, 1671 (2011).

    Article  ADS  Google Scholar 

  8. M.L. Gardel, M.T. Valentine, J.C. Crocker, A.R. Bausch, D.A. Weitz, Phys. Rev. Lett. 91, 158302 (2003).

    Article  ADS  Google Scholar 

  9. J.H. Shin, M.L. Gardel, L. Mahadevan, P. Matsudaira, D.A. Weitz, Proc. Natl. Acad. Sci. U.S.A. 101, 9636 (2004).

    Article  ADS  Google Scholar 

  10. F. Gittes, F.C. MacKintosh, Phys. Rev. E 58, R1241 (1998).

    Article  ADS  Google Scholar 

  11. D.C. Morse, Phys. Rev. E 63, 031502 (2001).

    Article  ADS  Google Scholar 

  12. D.A. Head, A.J. Levine, F.C. MacKintosh, Phys. Rev. Lett. 91, 108102 (2003).

    Article  ADS  Google Scholar 

  13. J. Wilhelm, E. Frey, Phys. Rev. Lett. 91, 108103 (2003).

    Article  ADS  Google Scholar 

  14. M. Das, F.C. MacKintosh, A.J. Levine, Phys. Rev. Lett. 99, 038101 (2007).

    Article  ADS  Google Scholar 

  15. C.P. Broedersz, X.M. Mao, T.C. Lubensky, F.C. MacKintosh, Nat. Phys. 7, 983 (2011).

    Article  Google Scholar 

  16. N.A. Kurniawan, S. Enemark, R. Rajagopalan, J. Chem. Phys. 136, 065101 (2012).

    Article  ADS  Google Scholar 

  17. M. Das, D.A. Quint, J.M. Schwarz, PLoS One 7, e35939 (2012).

    Article  ADS  Google Scholar 

  18. X.M. Mao, O. Stenull, T.C. Lubensky, Phys. Rev. E 87, 042601 (2013).

    Article  ADS  Google Scholar 

  19. X.M. Mao, N. Xu, T.C. Lubensky, Phys. Rev. Lett. 104, 085504 (2010).

    Article  ADS  Google Scholar 

  20. K. Sun, A. Souslov, X.M. Mao, T.C. Lubensky, Proc. Natl. Acad. Sci. U.S.A. 109, 12369 (2012).

    Article  ADS  Google Scholar 

  21. L. Le Goff, O. Hallatschek, E. Frey, F. Amblard, Phys. Rev. Lett. 89, 258101 (2002).

    Article  ADS  Google Scholar 

  22. M. Hinczewski, R.R. Netz, Macromolecules 44, 6972 (2011).

    Article  ADS  Google Scholar 

  23. E. van der Giessen, Nat. Phys. 7, 923 (2011).

    Article  Google Scholar 

  24. M. Hinczewski, Y. von Hansen, R.R. Netz Proc. Natl. Acad. Sci. U.S.A. 107214932010.

    Article  Google Scholar 

  25. J.C.F. Schulz, L. Schmidt, R.B. Best, J. Dzubiella, R.R. Netz, J. Am. Chem. Soc. 134, 6273 (2012).

    Article  Google Scholar 

  26. B.S. Khatri, T.C.B. Mcleish, Macromolecules 40, 6770 (2007).

    Article  ADS  Google Scholar 

  27. Y. von Hansen, R.R. Netz Eur. Phys. J. B86415 2013.

    Article  Google Scholar 

  28. S. Rode, Mechanical and Driven Networks in Biological Systems, Diploma thesis, Technical University of Munich, Germany (2012).

  29. M. Manghi, X. Schlagberger, Y.W. Kim, R.R. Netz, Soft Matter 2, 653 (2006).

    Article  ADS  Google Scholar 

  30. Y. von Hansen, M. Hinczewski, R.R. Netz, J. Chem. Phys. 134, 235102 (2011).

    Article  ADS  Google Scholar 

  31. A simulation movie of a short semiflexible polymer including the six fluctuating end-point coordinates is provided as Supplementary Material to this paper.

  32. O. Lieleg, M.M.A.E. Claessens, A.R. Bausch, Soft Matter 6, 218 (2010).

    Article  ADS  Google Scholar 

  33. R.D. Mullins, J.A. Heuser, T.D. Pollard, Proc. Natl. Acad. Sci. U.S.A. 95, 6181 (1998).

    Article  ADS  Google Scholar 

  34. L. Blanchoin, K.J. Amann, H.N. Higgs, J.B. Marchand, D.A. Kaiser, T.D. Pollard, Nature 404, 1007 (2000).

    Article  ADS  Google Scholar 

  35. J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh, D.A. Weitz, Phys. Rev. Lett. 85, 888 (2000).

    Article  ADS  Google Scholar 

  36. H. Risken, The Fokker-Planck Equation -- Methods of Solution and Applications, 3rd edition (Springer, 1996).

  37. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, Vol. 13 (Springer, 2002).

  38. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edition, Course of Theoretical Physics, Vol. 7 (Butterworth-Heinemann, Oxford, UK, 1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann von Hansen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Hansen, Y., Rode, S. & Netz, R.R. Convolution theory for dynamic systems: A bottom-up approach to the viscoelasticity of polymeric networks. Eur. Phys. J. E 36, 137 (2013). https://doi.org/10.1140/epje/i2013-13137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13137-5

Keywords

Navigation