Skip to main content
Log in

A simple model for the rotation of a trapped chiral nematic droplet under the action of a linearly polarized laser beam

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

There have been recent reports of continuous rotation of chiral nematic droplets in restricted ranges of diameter/pitch (d /p) values, trapped by a linearly polarized laser beam. We have developed a simple model to calculate the distortion in the helical structure of a set of flat layers, caused by the action of the strong electric field of the propagating laser beam on the dielectric anisotropy of the medium. The resulting change in the polarization state of the beam passing through the sample is then used to calculate the torque on the sample as a function of the azimuthal angle of the first layer. The main results are: i) the torque tends to zero even with circularly polarized beam for samples with thicknesses around integral multiples of 0.5p ; ii) the undistorted sample takes an equilibrium orientation for linearly polarized beam, which jumps by \( \pi\)/2 rad at the same sample thicknesses; iii) these samples will have a nonzero torque at all azimuthal angles of the first slice when the helical structure is distorted by the linearly polarized beam. The calculations show that a propagating accordion mode, in which the helical pitch alternately expands and contracts, gives rise to the nonzero torque. The theoretical predictions are in broad agreement with experimental results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  2. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Nature 394, 348 (1998)

    Article  ADS  Google Scholar 

  3. A.I. Bishop, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004)

    Article  ADS  Google Scholar 

  4. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 3627 (1999)

    Article  ADS  Google Scholar 

  5. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, H. Misawa, Appl. Phys. Lett. 82, 4657 (2003)

    Article  ADS  Google Scholar 

  6. T.A. Wood, H.F. Gleeson, M.R. Dickinson, A.J. Wright, Appl. Phys. Lett. 84, 4292 (2004)

    Article  ADS  Google Scholar 

  7. Y. Yang, P.D. Brimicombe, N.W. Roberts, M.R. Dickinsons, M. Osipov, H.F. Gleeson, Opt. Express 16, 6877 (2008)

    Article  ADS  Google Scholar 

  8. M. Mosallaeipour, Y. Hatwalne, N.V. Madhusudana, S. Ananthamurthy, J. Mod. Opt. 57, 395 (2010)

    Article  ADS  Google Scholar 

  9. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Oxford University Press, New York, 1993) p. 102

  10. C. Manzo, D. Paparo, L. Marrucci, I. Janossy, Mol. Cryst. Liq. Cryst. 454, 503 (2006)

    Google Scholar 

  11. C. Manzo, D. Paparo, L. Marrucci, I. Janossy, Phys. Rev. E 73, 051707 (2006)

    Article  ADS  Google Scholar 

  12. R.C. Jones, J. Opt. Soc. Am. 31, 488 (1941)

    Article  ADS  Google Scholar 

  13. R.C. Jones, J. Opt. Soc. Am. 31, 493 (1941)

    Article  ADS  Google Scholar 

  14. M. Born, E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999)

  15. S. Chandrasekhar, Liquid Crystals, 2nd edition (Cambridge University Press, Cambridge, 1992).

  16. S.D. Durbin, S.M. Arakelian, Y.R. Shen, Phys. Rev. Lett. 47, 1411 (1981)

    Article  ADS  Google Scholar 

  17. E. Brasselet, N. Murazawa, S. Juodkazis, H. Misawa, Phys. Rev. E 77, 041704 (2008)

    Article  ADS  Google Scholar 

  18. J.L. Sanders, Y. Yang, M.R. Dickinson, H.F. Gleeson, Philos. Trans. R. Soc. A 371, 20120265 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Mosallaeipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosallaeipour, M., Ananthamurthy, S. & Madhusudana, N.V. A simple model for the rotation of a trapped chiral nematic droplet under the action of a linearly polarized laser beam. Eur. Phys. J. E 36, 93 (2013). https://doi.org/10.1140/epje/i2013-13093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13093-0

Keywords

Navigation