Skip to main content
Log in

Structure and mechanism of maximum stability of isolated alpha-helical protein domains at a critical length scale

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davies, D.C. Phillips, V.C. Shore, Nature 185, 422 (1960)

    Article  ADS  Google Scholar 

  2. T. Ackbarow, X. Chen, S. Keten, M.J. Buehler, Proc. Natl. Acad. Sci. U.S.A. 104, 16410 (2007)

    Article  ADS  Google Scholar 

  3. L. Pauling, R.B. Corey, H.R. Branson, Proc. Natl. Acad. Sci. U.S.A. 37, 205 (1951)

    Article  ADS  Google Scholar 

  4. Z. Qin, M.J. Buehler, Phys. Rev. Lett. 104, 198304 (2010)

    Article  ADS  Google Scholar 

  5. Z. Qin, S. Cranford, T. Ackbarow, M.J. Buehler, Int. J. Appl. Mech. 1, 85 (2009)

    Article  Google Scholar 

  6. M.J. Buehler, Y.C. Yung, Nat. Mater. 8, 175 (2009)

    Article  ADS  Google Scholar 

  7. S.B. Prusiner, Science 216, 136 (1982)

    Article  ADS  Google Scholar 

  8. M.A. DePristo, D.M. Weinreich, D.L. Hartl, Nat. Rev. Genet. 6, 678 (2005)

    Article  Google Scholar 

  9. K.M. Pan, M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z.W. Huang, R.J. Fletterick, F.E. Cohen, S.B. Prusiner, Proc. Nat. Acad. Sci. U.S.A. 90, 10962 (1993)

    Article  ADS  Google Scholar 

  10. S. Kumar, M. Bansal, Biophys. J. 75, 1935 (1998)

    Article  ADS  Google Scholar 

  11. S. Penel, R.G. Morrison, R.J. Mortishire-Smith, A.J. Doig, J. Mol. Biol. 293, 1211 (1999)

    Article  Google Scholar 

  12. W. Kabsch, C. Sander, Biopolymers 22, 2577 (1983)

    Article  Google Scholar 

  13. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucl. Acids Res. 28, 235 (2000)

    Article  Google Scholar 

  14. A. Sali, E. Shakhnovich, M. Karplus, Nature 369, 248 (1994)

    Article  ADS  Google Scholar 

  15. P.A. Thompson, W.A. Eaton, J. Hofrichter, Biochemistry 36, 9200 (1997)

    Article  Google Scholar 

  16. V. Munoz, L. Serrano, Nat. Struct. Biol. 1, 399 (1994)

    Article  Google Scholar 

  17. U.R. Doshi, V. Munoz, J. Phys. Chem. B 108, 8497 (2004)

    Article  Google Scholar 

  18. V. Munoz, R. Ramanathan, Proc. Natl. Acad. Sci. U.S.A. 106, 1299 (2009)

    Article  ADS  Google Scholar 

  19. S. Lifson, A. Roig, J. Chem. Phys. 34, 1963 (1961)

    Article  ADS  Google Scholar 

  20. A. Vitalis, A. Caflisch, J. Chem. Theor. Comput. 8, 363 (2012)

    Article  Google Scholar 

  21. J. Bertaud, J. Hester, D.D. Jimenez, M.J. Buehler, J. Phys.: Condens. Matter 22, 035102 (2010)

    Article  ADS  Google Scholar 

  22. B.H. Zimm, J.K. Bragg, J. Chem. Phys. 31, 526 (1959)

    Article  ADS  Google Scholar 

  23. E. Shakhnovich, Chem. Rev. 106, 1559 (2006)

    Article  Google Scholar 

  24. K. Ghosh, K.A. Dill, J. Am. Chem. Soc. 131, 2306 (2009)

    Article  Google Scholar 

  25. R. Burioni, D. Cassi, F. Cecconi, A. Vulpiani, Proteins 55, 529 (2004)

    Article  Google Scholar 

  26. M. de Leeuw, S. Reuveni, J. Klafter, R. Granek, PLoS ONE 4, e7296 (2009)

    Article  ADS  Google Scholar 

  27. D.U. Ferreiro, A.M. Walczak, E.A. Komives, P.G. Wolynes, Plos Comput. Biol. 4, e1000070 (2008)

    Article  MathSciNet  Google Scholar 

  28. M. Karplus, Y.Q. Zhou, D. Vitkup, J. Mol. Biol. 285, 1371 (1999)

    Article  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, 3d revision and English edition (Pergamon Press, Oxford, New York, 1980)

  30. T. Lazaridis, M. Karplus, Proteins-Struct. Funct. Genet. 35, 133 (1999)

    Article  Google Scholar 

  31. M. Bertz, M. Wilmanns, M. Rief, Proc. Natl. Acad. Sci. U.S.A. 106, 13307 (2009)

    Article  ADS  Google Scholar 

  32. C.-I. Brändén, J. Tooze, Introduction to Protein Structure, 2nd edition (Garland Pub., New York, 1999)

  33. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  34. A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008)

    Article  ADS  Google Scholar 

  35. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995)

    Article  ADS  Google Scholar 

  36. J.R.C.v.d. Maarel, Introduction to Biopolymer Physics (World Scientific, Hackensack, NJ, 2008)

  37. J. Bertaud, Z. Qin, M.J. Buehler, J. Strain Anal. Engin. Design 44, 517 (2009)

    Article  Google Scholar 

  38. S. Keten, M.J. Buehler, Phys. Rev. Lett. 100, 198301 (2008)

    Article  ADS  Google Scholar 

  39. M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia, M. Parrinello, Comput. Phys. Commun. 180, 1961 (2009)

    Article  ADS  Google Scholar 

  40. D.J. Barlow, J.M. Thornton, J. Mol. Biol. 201, 601 (1988)

    Article  Google Scholar 

  41. S.M. Kreuzer, R. Elber, T.J. Moon, J. Phys. Chem. B 116, 8662 (2012)

    Article  Google Scholar 

  42. P. Palencar, T. Bleha, Macromol. Theory Simul. 19, 488 (2010)

    Article  Google Scholar 

  43. M.J. Buehler, Nature Nanotechnol. 5, 172 (2010)

    Article  ADS  Google Scholar 

  44. P.R. LeDuc, W.C. Messner, J.P. Wikswo, Annu. Rev. Biomed. Engin. 13, 369 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Fabre, A. & Buehler, M.J. Structure and mechanism of maximum stability of isolated alpha-helical protein domains at a critical length scale. Eur. Phys. J. E 36, 53 (2013). https://doi.org/10.1140/epje/i2013-13053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13053-8

Keywords

Navigation