Skip to main content
Log in

Long-time damage under creep experiments in disordered materials: Transition from exponential to logarithmic fracture dynamics

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Some materials, and in particular some polymer materials, can display an important range of stress levels for which slow and progressive damage can be observed before they finally break. In creep or fatigue experiments, final rupture can happen after very long times, during which the mechanical properties have progressively decayed. We model here some generic features of the long-time damage evolution of disordered elastic materials under constant load, characterized by a progressive decrease of the elastic modulus. We do it by studying a two-dimensional electric random fuse network with quenched disorder and thermal noise. The time evolution of global quantities (conductivity or, equivalently, elastic modulus) is characterized by different regimes ranging from faster than exponential to slower than logarithmic, which are governed by the stress level and the relative magnitude of disorder with respect to temperature. A region of widely distributed rupture times exists where the modulus decays (more slowly than) logarithmically for not too small values of the disorder and for not too large values of the load. A detailed analysis of the dynamical regimes is performed and presented through a phase diagram.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Roux, H.J. Herrmann (Editors), Statistical Models for the Fracture of Disordered Media (North-Holland, Amsterdam, 1990)

  2. B.K. Chakrabarti, L.G. Benguigui, Statistical Physics of Fracture and Breakdown in Disordered Systems (Clarendon Press, Oxford, 1997)

  3. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006)

    Article  ADS  Google Scholar 

  4. L. Vanel, S. Ciliberto, P.-P. Cortet, S. Santucci, J. Phys. D: Appl. Phys. 42, 214007 (2009)

    Article  ADS  Google Scholar 

  5. R.W. Hertzberg, John A. Manson, Fatigue of Engineering Plastics (Academic Press, New York, 1980)

  6. E. Mourglia, PhD Thesis, Laboratoire de Polymères et Matériaux Avancés, CNRS/Rhodia, Lyon, France (2010)

  7. E. Mourglia, D. Long, L. Odoni, P. Sotta, C. Rochas, in Book of Abstracts, 14th International Conference on Deformation, Yield and Fracture of Polymers, Rolduc Abbey, Kerkrade, The Netherlands, 6-9 April 2009

  8. P.K. Mallick, Y. Zhou, Int. J. Fatigue 26, 941 (2004)

    Article  Google Scholar 

  9. J.J. Horst, J. Spoormaker, Polym. Eng. Sci. 36, 2718 (1996)

    Article  Google Scholar 

  10. Y. Zhou, P.K. Mallick, Polym. Composite 27, 230 (2006)

    Article  Google Scholar 

  11. V. Bellenger, A. Tcharkhtchi, P. Castaing, Int. J. Fatigue 28, 1348 (2006)

    Article  MATH  Google Scholar 

  12. A. Bernasconi, M. Kulin, Polym. Composite 30, 154 (2009)

    Article  Google Scholar 

  13. J.W. Dally, Polym. Eng. Sci. 9, 434 (1969)

    Article  Google Scholar 

  14. S. Castagnet, S. Girault, J.L. Gacougnolle, P. Dang, Polymer 41, 7523 (2000)

    Article  Google Scholar 

  15. A. Pawlak, A. Galeski, Macromolecules 38, 9688 (2005)

    Article  ADS  Google Scholar 

  16. J.F. Mandell, D.D. Huang, F.J. McGarry, Polym. Composite 2, 137 (1981)

    Article  Google Scholar 

  17. A.J. Lesser, J. Appl. Polym. Sci. 58, 869 (1995)

    Article  Google Scholar 

  18. P.B. Bowden, J.A. Jukes, J. Mater. Sci. 7, 52 (1972)

    Article  ADS  Google Scholar 

  19. V.S. Kuksenko, V.P. Tamuzs, Fracture micromechanics of polymer materials (Martinus Nijhoff Publishers, The Hague, 1981)

  20. D.D. Joseph, J. Fluid Mech. 366, 367 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. B. Kahng, G.G. Batrouni, S. Redner, L. De Arcangelis, H.J. Herrmann, Phys. Rev. B 37, 7625 (1988)

    Article  ADS  Google Scholar 

  22. S. Zapperi, P. Ray, H.E. Stanley, A. Vespignani, Phys. Rev. E 59, 5049 (1999)

    Article  ADS  Google Scholar 

  23. J.V. Andersen, D. Sornette, K.-T. Leung, Phys. Rev. Lett. 78, 2140 (1997)

    Article  ADS  Google Scholar 

  24. P.-P. Cortet, L. Vanel, S. Ciliberto, Europhys. Lett. 74, 602 (2006)

    Article  ADS  Google Scholar 

  25. S. Santucci, L. Vanel, A. Guarino, R. Scorretti, S. Ciliberto, Europhys. Lett. 62, 320 (2003)

    Article  ADS  Google Scholar 

  26. R. Toussaint, A. Hansen, Phys. Rev. E 73, 046103 (2006)

    Article  ADS  Google Scholar 

  27. D. De Tommasi, S. Marzano, G. Puglisi, G. Saccomandi, Continuum Mech. Thermodyn. 22, 47 (2010)

    Article  ADS  MATH  Google Scholar 

  28. F. Reurings, M.J. Alava, Eur. Phys. J. B 47, 85 (2005)

    Article  ADS  Google Scholar 

  29. A. Guarino, L. Vanel, R. Scorretti, S. Ciliberto, J. Stat. Mech. P06020, (2006)

  30. S. Roux, Phys. Rev. E 62, 6164 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Ciliberto, A. Guarino, R. Scorretti, Physica D 158, 83 (2001)

    Article  ADS  MATH  Google Scholar 

  32. R. Scorretti, S. Ciliberto, A. Guarino, Europhys. Lett. 55, 626 (2001)

    Article  ADS  Google Scholar 

  33. A. Politi, S. Ciliberto, R. Scorretti, Phys. Rev. E 66, 026107 (2002)

    Article  ADS  Google Scholar 

  34. A. Saichev, D. Sornette, Phys. Rev. E 71, 016608 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Guarino, S. Ciliberto, S. Eur. Phys. J. B 83, 215 (2011)

    Article  ADS  Google Scholar 

  36. N. Shahidzadeh-Bonn, P. Vi, X. Chateau, J.-N. Roux, D. Bonn, Phys. Rev. Lett. 95, 175501 (2005)

    Article  ADS  Google Scholar 

  37. N. Mallick, S. Ciliberto, S.G. Roux, P. Di Stefano, L. Vanel, Proceedings of the $12^{th}$ International Conference on Fracture, 12-17 juillet 2009, Ottawa, communication T48.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fusco, C., Vanel, L. & Long, D.R. Long-time damage under creep experiments in disordered materials: Transition from exponential to logarithmic fracture dynamics. Eur. Phys. J. E 36, 34 (2013). https://doi.org/10.1140/epje/i2013-13034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13034-y

Keywords

Navigation