Skip to main content
Log in

Colloidal aggregates tested via nanoindentation and quasi-simultaneous 3D imaging

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The mechanical properties of aggregated colloids depend on the mutual interplay of inter-particle potentials, contact forces, aggregate structure and material properties of the bare particles. Owing to this variety of influences, experimental results from macroscopic mechanical testings were mostly compared to time-consuming, microscopic simulations rather than to analytical theories. The aim of the present paper was to relate both macroscopic and microscopic mechanical data with each other and simple analytical models. We investigated dense amorphous aggregates made from monodisperse poly-methyl methacrylate (PMMA) particles (diameter: 1.6 \(\mu\) m via nanoindentation in combination with confocal microscopy. The resulting macroscopic information was complemented by the three-dimensional aggregate structure as well as the microscopic strain field and strain tensor. The measured strain field and tensor were in reasonable agreement with the predictions from analytical continuum theories. Consequently, the measured force-depth curves could be analyzed within a theoretical framework that had been frequently used for nanoindentation of atomic matter such as metals, ceramics and polymers. The extracted values for hardness and effective Young’s modulus represented average values characteristic of the aggregate. On the basis of of these parameters we discuss the influence of the strength of particle bonds by introducing polystyrene (PS) between the particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfons van Blaaderen, Science 301, 470 (2003)

    Article  Google Scholar 

  2. Daan Frenkel, Science 296, 65 (2002)

    Article  Google Scholar 

  3. P. Schall, I. Cohen, D.A. Weitz, F. Spaepen, Nature 440, 319 (2006)

    Article  ADS  Google Scholar 

  4. Dirk G.A.L. Aarts, Matthias Schmidt, Henk N.W. Lekkerkerker, Science 304, 847 (2004)

    Article  ADS  Google Scholar 

  5. R. Besseling, Eric R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007)

    Article  ADS  Google Scholar 

  6. Eric R. Weeks, J.C. Crocker, Andrew C. Levitt, Andrew Schofield, D.A. Weitz, Science 287, 627 (2000)

    Article  ADS  Google Scholar 

  7. K.A. Dawson, G. Foffi, F. Sciortino, P. Tartaglia, E. Zaccarelli, J. Phys.: Condens. Matter 13, 9113 (2001)

    Article  ADS  Google Scholar 

  8. M. Siebenbrger, M. Ballauff, J. Rheol. 53, 707 (2009)

    Article  ADS  Google Scholar 

  9. Alessio Zaccone, Miroslav Soos, Marco Lattuada, Hua Wu, Matthäus U. Bäbler, Massimo Morbidelli, Phys. Rev. E 79, 061401 (2009)

    Article  ADS  Google Scholar 

  10. C. Schilde, S. Breitung-Faes, A. Kwade, Ceramic Forum Internat. 84, 12 (2007)

    Google Scholar 

  11. C. Schilde, I. Kampen, A. Kwade, Chem. Eng. Sci. 65, 3518 (2010)

    Article  Google Scholar 

  12. C. Schilde, T. Gothsch, K. Quarch, M. Kind, A. Kwade, Chem. Eng. Tech. 32, 1078 (2009)

    Article  Google Scholar 

  13. C. Schilde, A. Kwade, Chem. Ing. Tech. 81, 1155 (2009)

    Article  Google Scholar 

  14. S. Zumer, M. Ravnik, T. Porenta, G.P. Alexander, J.M. Yeomans, Proc. SPIE 7775, 77750H (2010) DOI:10.1117/2.1201009.003168

    Article  ADS  Google Scholar 

  15. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001)

    Article  ADS  Google Scholar 

  16. M. D’Acunzi, M. Mammen, L. Singh, X. Deng, M. Roth, G.K. Auernhammer, H.-J. Butt, D. Vollmer, Faraday Discuss. 146, 35 (2010)

    Article  ADS  Google Scholar 

  17. J. Boussinesq, Applications des Potentiels a l’étude de équilibre et du mouvement des solides élastiques (Gauthier-Villars, Paris, 1885)

  18. H. Hertz, J. Reine Angew. Math. 1882, 156 (1882)

    Google Scholar 

  19. J. Hay, Exp. Tech. 33, 66 (2009)

    Article  Google Scholar 

  20. M.F. Doernera, W.D. Nixa, J. Mater. Res. 1, 601 (1986)

    Article  ADS  Google Scholar 

  21. Krystyn J. Van Vliet, Catherine A. Tweedie, J. Mater. Res. 21, 3029 (2006)

    Article  ADS  Google Scholar 

  22. A. Gouldstone, K.J. Van Vliet, S. Suresh, Nature 411, 656 (2001)

    Article  ADS  Google Scholar 

  23. D. Filip, V.I. Uricanu, M.H.G. Duits, D. van den Ende, J. Mellema, W.G.M. Agterof, F. Mugele, Langmuir 22, 560 (2006)

    Article  Google Scholar 

  24. X. Ling, H.-J. Butt, M. Kappl, Langmuir 23, 8392 (2007)

    Article  Google Scholar 

  25. Lars-Oliver Heim, Jürgen Blum, Markus Preuss, Hans-Jürgen Butt, Phys. Rev. Lett. 83, 3328 (1999)

    Article  ADS  Google Scholar 

  26. S. Ecke, R. Raiteri, E. Bonaccurso, C. Reiner, H.-J. Deiseroth, H.J. Butt, Rev. Sci. Instrum. 72, 4164 (2001)

    Article  ADS  Google Scholar 

  27. R.R. Agayan, R.G. Smith, R. Kopelman, J. Appl. Phys. 104, 1 (2008)

    Article  Google Scholar 

  28. John C. Crocker, David G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  29. E. Weeks, Particle tracking using idl, http://www.physics.emory.edu/~weeks/idl, September 2008

  30. Peter Schall, David A. Weitz, Frans Spaepen, Science 318, 1895 (2007)

    Article  ADS  Google Scholar 

  31. D. Chen, D. Semwogerere, J. Sato, V. Breedveld, Eric R. Weeks, Phys. Rev. E 81, 011403 (2010)

    Article  ADS  Google Scholar 

  32. Subra Suresh, Nat. Mater. 5, 253 (2006)

    Article  ADS  Google Scholar 

  33. R.L. Smith, G.E. Sandland, Proc. Inst. Mech. Eng. 102, 623 (1922)

    Article  Google Scholar 

  34. J.A. Brinell, Congr. Int. Meth. Essai Matér. Construct. 2, 83 (1901)

    Google Scholar 

  35. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975)

    Google Scholar 

  36. S.I. Bulychev, V.P. Alekhin, Zavod. Lab. 53, 76 (1987)

    Google Scholar 

  37. M.F. Doerner, W.D. Nix, J. Mater. Res. 1, 601 (1986)

    Article  ADS  Google Scholar 

  38. N.H. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  39. R. Bartali, V. Michelia, G. Gottardia, A. Vaccaria, N. Laidania, Surf. Coat. Tech. 204, 2073 (2010)

    Article  Google Scholar 

  40. J. Malzbender, G. de With, J. Mater. Res. 17, 502 (2002)

    Article  ADS  Google Scholar 

  41. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    Article  ADS  Google Scholar 

  42. C. Pathmamanoharan, K. Groot, J.K.G. Dhont, Colloids Polym. Sci. 275, 897 (1997)

    Article  Google Scholar 

  43. L. Antl, J.W. Goodwin, R.D. Hill, R.H. Ottewill, S.M. Owens, S. Papworth, J.A. Waters, Coll. Surf. 17, 67 (1986)

    Article  Google Scholar 

  44. Remco Tuinier, Gerrit A. Vliegenthart, Henk N.W. Lekkerkerker, J. Chem. Phys. 113, 10768 (2000)

    Article  Google Scholar 

  45. P.J. Lu, J.C. Conrad, H.M. Wyss, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 96, 028306 (2006)

    Article  ADS  Google Scholar 

  46. C.P. Ohtsuka, T. Royall, H. Tanaka, EPL 84, 46002 (2008)

    Article  ADS  Google Scholar 

  47. Rei Kurita, Eric R. Weeks, Phys. Rev. E 82, 011403 (2010)

    Article  ADS  Google Scholar 

  48. M. Roth, M. Franzmann, M. d’Acunzi, M. Kreiter, G.K. Auernhammer, Arxiv. cond-mat. soft. 1106, 3623v1 (2011)

    Google Scholar 

  49. James B. Pawley, Handbook of biological confocal microscopy (Springer Science + Buisness Media, LLC, 2006)

  50. Marvin Minski, Scanning 10, 128 (1988)

    Article  Google Scholar 

  51. A.D. Dinsmore, Eric R. Weeks, Vikram Prasad, Andrew C. Levitt, D.A. Weitz, Appl. Opt. 40, 4152 (2001)

    Article  ADS  Google Scholar 

  52. T. Kawasaki, A. Onuki, cond-mat.soft 1103, 1051 (2011)

    Google Scholar 

  53. K.L. Johnson, Contact mechanics, chapter 4, Normal contact of elastic solids: Hertz theory (Cambridge University Press, 2004) pp. 84--106

  54. M.T. Huber, Ann. Phys. (Leipzig) 316, 153 (2006)

    Google Scholar 

  55. R.M. Davies, Proc. R. Soc. London, Ser. A 197, 416 (1949)

    Article  ADS  Google Scholar 

  56. K.L. Johnson, Contact mechanics, chapter 6, Normal contact of inelastic solids (Cambridge University Press, 2004) pp. 153--201

  57. I.S. Choi, M. Dao, S. Suresh, J. Mech. Phys. Solids 56, 157 (2008)

    Article  ADS  MATH  Google Scholar 

  58. K.-P. Lu, S. Lee, C.P. Cheng, J. Appl. Phys. 90, 1745 (2001)

    Article  ADS  Google Scholar 

  59. Y.-T. Cheng, C.-M. Cheng, Appl. Phys. Lett. 73, 614 (1998)

    Article  ADS  Google Scholar 

  60. J. Malzbender, G. de With, Surf. Coat. Tech. 135, 60 (2000)

    Article  Google Scholar 

  61. Marcel Roth, Carsten Schilde, Philipp Lellig, Arno Kwade, Günter K. Auernhammer, Chem. Lett. 41, 1110 (2012)

    Article  Google Scholar 

  62. L. Zhang, M. D’Acunzi, M. Kappl, G.K. Auernhammer, D. Vollmer, Langmuir 25, 2711 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, M., Schilde, C., Lellig, P. et al. Colloidal aggregates tested via nanoindentation and quasi-simultaneous 3D imaging. Eur. Phys. J. E 35, 124 (2012). https://doi.org/10.1140/epje/i2012-12124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12124-8

Keywords

Navigation