Skip to main content
Log in

Tensile strength and fracture of cemented granular aggregates

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Tarbuck, F.K. Lutgens, Earth - An introduction to Physical Geology (Pearson Education, New Jersey, 2005)

  2. I.J. Merchant, D.E. Macphee, H.W. Chandler, R.J. Henderson, Cement Concrete Res. 31, 1873 (2001)

    Article  Google Scholar 

  3. E. Schlangen, J.G.M. Van Mier, Cement Concrete Comp. 14, 105 (1992)

    Article  Google Scholar 

  4. F. de Larrard, A. Belloc, ACI Mater. J. 94, 417 (1997)

    Google Scholar 

  5. A. Benhamida, F. Bouchelaghem, H. Dumontet, Int. J. Numer. Analy. Methods Geomech. 29, 187 (2005)

    Article  MATH  Google Scholar 

  6. Y. Pomeranz, Wheat: Chemistry and technology (AACC, St Paul USA, 1988)

  7. W. Atwell, Wheat Flour (AACC, St Paul USA, 2001)

  8. V. Topin, J.Y. Delenne, F. Radjai, L. Brendel, F. Mabille, Eur. Phys. J. E 23, 413 (2007)

    Article  Google Scholar 

  9. K. Johnson, K. Kendall, A. Roberts, Proc. R. Soc. London, Ser. A (Math. Phys. Sci.) 324, 301 (1971)

    Article  ADS  Google Scholar 

  10. K. Kendall, N. Alford, J. Birchall, British Ceramic Proc. 37, 255 (1986)

    Google Scholar 

  11. K. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1999)

  12. A. Castellanos, Adv. Phys. 54, 263 (2005)

    Article  ADS  Google Scholar 

  13. D. Elata, J. Dvorkin, Mech. Mater. 23, 147 (1996)

    Article  Google Scholar 

  14. F. Sienkiewicz, A. Shukla, M. Sadd, Z. Zhang, J. Dvorkin, Mech. Mater. 22, 43 (1996)

    Article  Google Scholar 

  15. L. Zhonghua, S. Schmauder, Comput. Mater. Sci. 18, 295 (2000)

    Article  Google Scholar 

  16. O. Buyukozturk, B. Hearing, Int. J. Solids Struct. 35, 4055 (1998)

    Article  Google Scholar 

  17. G. Lilliu, J.G.M. Van Mier, Engin. Fract. Mech. 70, 927 (2003)

    Article  Google Scholar 

  18. H. Tan, Y. Huang, C. Liu, P. Geubelle, Int. J. Plasticity 21, 1890 (2005)

    Article  MATH  Google Scholar 

  19. F. de Larrard, Concrete mixture proportioning. A scientific approach (E & FN SPON, London, 1991)

  20. Z. Hashin, P.J.M. Monteiro, Cement Concrete Res. 32, 1291 (2002)

    Article  Google Scholar 

  21. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979)

    Article  Google Scholar 

  22. C. Thornton, C.W. Randall, Applications of theoretical contact mechanics to solid particle system simulation, in Micromechanics of granular media (Elsevier, Amsterdam, 1988)

  23. J. Moreau, Eur. J. Mech. A/Solids 13, 93 (1994)

    MathSciNet  MATH  Google Scholar 

  24. H.G. Matuttis, S. Luding, H.J. Herrmann, Powder Technol. 109, 278 (2000)

    Article  Google Scholar 

  25. T. Pöschel, T. Schwager, Computational granular dynamics: models and algorithms (Springer, Berlin, 2005)

  26. F. Radjai, F. Dubois (Editors), Discrete-element Modeling of Granular Materials (Iste-Wiley, London, 2011)

  27. S. Roux, Quasi-static contacts, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998), p. 267

  28. S. Luding, Collisions and Contacts between two particles, in Physics of dry granular media, NATO ASI Ser. E350, edited by H.J. Herrmann, J.P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998), p. 285

  29. F. Radjai, I. Preechawuttipong, R. Peyroux, Cohesive granular texture, in Continuous and discontinuous modelling of cohesive frictional materials, edited by P. Vermeer, S. Diebels, W. Ehlers, H. Herrmann, S. Luding, E. Ramm (Springer Verlag, Berlin, 2001), pp. 148--159

  30. J.Y. Delenne, V. Topin, V. Richefeu, F. Dubois, F. Radjai, Discrete-element modeling of granular materials (Iste-Wiley, London, 2011), chapt. Numerical modeling of cohesive interactions, pp. 263--302

  31. F. Kun, H. Carmona, J. Andrade, H. Herrmann, Phys. Rev. Lett. 100, 094301 (2008)

    Article  ADS  Google Scholar 

  32. H.A. Carmona, F.K. Wittel, F. Kun, H. Herrmann, Phys. Rev. E 77, 051302 (2008)

    Article  ADS  Google Scholar 

  33. F. Kun, H.J. Herrmann, Phys. Rev. E 59, 2623 (1999)

    Article  ADS  Google Scholar 

  34. H. Carmona, F. Kun, J. Andrade, H. Herrmann, Phys. Rev. E 75, 046115 (2007)

    Article  ADS  Google Scholar 

  35. F.K.G. Timar, J. Blomer, H.J. Herrmann, Phys. Rev. Lett. 104, 095502 (2010)

    Article  ADS  Google Scholar 

  36. Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 11, 127 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J. Halpin, S. Tsai, Environmental factors estimation in composite materials design, Air Force Materials Lab. Technical report, AFML-TR-67-423 (1967)

  38. J. Eshelby, Proc. R. Soc. London 241, 376 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. G.I. Barenblatt, Adv. Appl. Mech. 7, 55 (1962)

    Article  MathSciNet  Google Scholar 

  40. Z. Wang, L. Ma, L. Wu, H. Yu, Acta Mech. Solida Sinica 25, 9 (2012) ISSN 0894-9166

    Article  ADS  Google Scholar 

  41. A. Ayyar, N. Chawla, Compos. Sci. Technol. 66, 1980 (2006)

    Article  Google Scholar 

  42. S. Roux, H.J. Herrmann, Statistical Models for Fracture in Disordered Media (North Holland, Amsterdam, 1990), chap. Continuum and discrete description of elasticity and other rheological behavior, pp. 87--114

  43. E. Schlangen, E.J. Garboczi, Engin. Fract. Mech. 57, 319 (1997)

    Article  Google Scholar 

  44. G.M.J. VanMier, M.B. Chiaia, A. Vervuurt, Comput. Methods Appl. Mech. Engin. 142, 189 (1997)

    Article  ADS  Google Scholar 

  45. C. Chang, T. Wang, L. Sluys, J.V. Mier, Engin. Fract. Mech. 69, 1959 (2002)

    Article  Google Scholar 

  46. B. Chiaia, A. Vervuurt, J.G.M. Van Mier, Engin. Fract. Mech. 57, 301 (1997)

    Article  Google Scholar 

  47. A. Delaplace, G. Pijaudier-Cabot, S. Roux, J. Mech. Phys. Solids 44, 99 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. S. Feng, M.F. Thorpe, E. Garboczi, Phys. Rev. B 31, 276 (1985)

    Article  ADS  Google Scholar 

  49. H.J. Herrmann, S. Roux, Statistical Models for Fracture in Disordered Media (North Holland, Amsterdam, 1990)

  50. H. Gao, P. Klein, J. Mech. Phys. Solids 46, 187 (1998)

    Article  ADS  MATH  Google Scholar 

  51. E.P. Prado, J.G.M. van Mier, Engin. Fract. Mech. 70, 1793 (2003)

    Article  Google Scholar 

  52. J.G.M. VanMier, M.R.A. van Vliet, T.K. Wang, Mech. Mater. 34, 705 (2002)

    Article  Google Scholar 

  53. H.J. Vogel, H. Hoffmann, A. Leopold, K. Roth, Geoderma 125, 213 (2005)

    Article  Google Scholar 

  54. H.J. Vogel, H. Hoffmann, K. Roth, Geoderma 125, 203 (2005)

    Article  Google Scholar 

  55. J. Delenne, V. Topin, F. Radjai, Acta Mech. 205, 9 (2009) ISSN 0001-5970

    Article  MATH  Google Scholar 

  56. J.G.M. VanMier, M.R.A. van Vliet, Construct. Build. Mater. 13, 3 (1999)

    Article  Google Scholar 

  57. V. Topin, F. Radjai, J.Y. Delenne, A. Sadoudi, F. Mabille, J. Cereal Sci. 47, 347 (2007)

    Article  Google Scholar 

  58. J.J. Moreau, Numerical Investigation of Shear Zones in Granular Materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997), pp. 233--247

  59. V. Topin, F. Radjai, J.Y. Delenne, F. Mabille, Powder Technol. 190, 215 (2009) ISSN 0032-5910

    Article  Google Scholar 

  60. L. Dormieux, D. Kondo, F.J. Ulm (Editors), Microporomechanics (Wiley, England, 2006)

  61. A. Roberts, M. Teubner, Phys. Rev. E 51, 4141 (1995)

    Article  ADS  Google Scholar 

  62. J.M. Gatt, Y. Monerie, D. Laux, D. Baron, 336, 11 (2005)

    Google Scholar 

  63. F. Radjai, D.E. Wolf, M. Jean, J. Moreau, Phys. Rev. Lett. 80, 61 (1998)

    Article  ADS  Google Scholar 

  64. C. Liu, S.R. Nagel, D.A. Schecter, S.N. Coppersmith, S. Majumdar, O. Narayan, T.A. Witten, Science 269, 513 (1995)

    Article  ADS  Google Scholar 

  65. F. Radjai, M. Jean, J. Moreau, S. Roux, Phys. Rev. Lett. 77, 274 (1996)

    Article  ADS  Google Scholar 

  66. L.E. Silbert, G.S. Grest, J.W. Landry, Phys. Rev. E 66, 1 (2002)

    Article  Google Scholar 

  67. V. Richefeu, F. Radjai, M. El Youssoufi, Eur. Phys. J. E 21, 359 (2006)

    Article  Google Scholar 

  68. F. Radjai, D.E. Wolf, Granular Matter 1, 3 (1998)

    Article  MATH  Google Scholar 

  69. L. Dormieux, E. Lemarchand, D. Kondo, E. Fairbairn, Mater. Struct. 37, 31 (2004)

    Article  Google Scholar 

  70. M.Y. He, J.W. Hutchinson, Int. J. Solids Struct. 25, 1053 (1989)

    Article  Google Scholar 

  71. C.S. Chang, T.K. Wang, L.J. Sluys, J.G.M. van Mier, Engin. Fract. Mech. 69, 1941 (2002)

    Article  Google Scholar 

  72. J. Fitoussi, G. Guo, D. Baptiste, Comp. Sci. Technol. 58, 759 (1998)

    Article  Google Scholar 

  73. G.K. Hu, G. Guo, D. Baptiste, Comput. Mater. Sci. 9, 420 (1998)

    Article  Google Scholar 

  74. L. Mishnaevsky Jr., K. Derrien, D. Baptiste, Compos. Sci. Technol. 64, 1805 (2004)

    Article  Google Scholar 

  75. L. Staron, F. Radjai, J.P. Vilotte, Eur. Phys. J. E 18, 311 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Affes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affes, R., Delenne, J.Y., Monerie, Y. et al. Tensile strength and fracture of cemented granular aggregates. Eur. Phys. J. E 35, 117 (2012). https://doi.org/10.1140/epje/i2012-12117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12117-7

Keywords

Navigation