Skip to main content
Log in

A circle swimmer at low Reynolds number

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. For small strokes, we discuss the motion of the swimmer as a function of the separation angle between its links. We find that swimmers describe either clockwise or anticlockwise circular motion depending on the tilting angle in a non-trivial manner. The symmetry of the swimmer leads to a quadrupolar decay of the far flow field. We discuss the potential extensions and experimental realisation of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Toner, Y.H. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).

    Article  ADS  Google Scholar 

  3. M.E. Cates, Rep. Prog. Phys. 75, 042601 (2012).

    Article  ADS  Google Scholar 

  4. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012).

    Article  Google Scholar 

  5. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004).

    Article  ADS  Google Scholar 

  6. J.E. Avron et al., New J. Phys. 7, 234 (2005).

    Article  ADS  Google Scholar 

  7. R. Dreyfus, J. Baudry, H.A. Stone, Eur. Phys. J. B 47, 161 (2005).

    Article  ADS  Google Scholar 

  8. D.J. Earl, C.M. Pooley, J.F. Ryder, I. Bredberg, J.M. Yeomans, J. Chem. Phys. 126, 064703 (2007).

    Article  ADS  Google Scholar 

  9. R. Golestanian, A. Ajdari, Phys. Rev. E 77, 036308 (2008).

    Article  ADS  Google Scholar 

  10. R. Golestanian, Eur. Phys. J. E 25, 1 (2008).

    Article  Google Scholar 

  11. G.P. Alexander, J.M. Yeomans, Europhys. Lett. 83, 34006 (2008).

    Article  ADS  Google Scholar 

  12. E. Lauga, D. Bartolo, Phys. Rev. E 78, 030901 (2008).

    Article  ADS  Google Scholar 

  13. A.M. Leshansky et al., New J. Phys. 9, 145 (2009).

    Article  Google Scholar 

  14. G.J. Elfring, E. Lauga, Phys. Rev. Lett. 103, 088101 (2009).

    Article  ADS  Google Scholar 

  15. H.C. Berg, L. Turner, Biophys. J. 58, 919 (1990).

    Article  ADS  Google Scholar 

  16. W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. Whitesides, Nature 435, 1271 (2005).

    Article  ADS  Google Scholar 

  17. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006).

    Article  ADS  Google Scholar 

  18. J. Hill, O. Kalkanci, J.L. McMurry, H. Koser, Phys. Rev. Lett. 98, 068101 (2007).

    Article  ADS  Google Scholar 

  19. V.B. Shenoy, D.T. Tambe, A. Prasad, J.A. Theriot, Proc. Natl. Acad. Sci. U.S.A. 104, 8229 (2007).

    Article  ADS  Google Scholar 

  20. S. Schmidt, J. van der Gucht, P.M. Biesheuvel, R. Weinkamer, E. Helfer, A. Fery, Eur. Biophys. J. 37, 1361 (2008).

    Article  Google Scholar 

  21. I.H. Riedel, K. Kruse, J. Howard, Science 309, 300 (2005).

    Article  ADS  Google Scholar 

  22. D.M. Woolley, Reproduction 126, 259 (2003).

    Article  Google Scholar 

  23. B.M. Friedrich, F. Jülicher, New J. Phys. 10, 123025 (2008).

    Article  ADS  Google Scholar 

  24. S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii, K. Yoshikawa, Langmuir 13, 4454 (1997).

    Article  Google Scholar 

  25. G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011).

    Article  ADS  Google Scholar 

  26. B. ten Hagen, Bachelor thesis, University of Düsseldorf (2011).

  27. H.C. Crenshaw, Amer. Zool. 36, 608 (1996).

    Google Scholar 

  28. E.M. Purcell, Am. J. Phys. 45, 3 (1977).

    Article  ADS  Google Scholar 

  29. J. Dunstan, G. Mino, E. Clement, R. Soto, Phys. Fluids 24, 011901 (2012).

    Article  ADS  Google Scholar 

  30. H. Shum, E.A. Gaffney, D.J. Smith, Proc. R. Soc. London, Ser. A 466, 1725 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. M. Leoni, T.B. Liverpool, EPL 92, 64004 (2010).

    Article  ADS  Google Scholar 

  32. Y. Fily, A. Baskaran, M.C. Marchetti, Soft Matter 8, 3002 (2012).

    Article  ADS  Google Scholar 

  33. S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101 (2008).

    Article  Google Scholar 

  34. S. van Teeffelen, U. Zimmermann, H. Löwen, Soft Matter 5, 4510 (2009).

    Article  ADS  Google Scholar 

  35. B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011).

    Article  ADS  Google Scholar 

  36. C.M. Pooley, G.P. Alexander, J.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007).

    Article  ADS  Google Scholar 

  37. G.P. Alexander, C.M. Pooley, J.M. Yeomans, Phys. Rev. E 78, 045302 (2008).

    Article  ADS  Google Scholar 

  38. B. ten Hagen, R. Wittkowski, H. Löwen, Phys. Rev. E 84, 031105 (2011).

    Article  ADS  Google Scholar 

  39. J. Dunkel, V.B. Putz, I.M. Zaid, J.M. Yeomans, Soft Matter 6, 4268 (2010).

    Article  ADS  Google Scholar 

  40. V.B. Putz, J.M. Yeomans, J. Stat. Phys. 137, 1001 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. G.J. Elfring, E. Lauga, Phys. Fluids 23, 011902 (2011).

    Article  ADS  Google Scholar 

  42. R. Golestanian, J.M. Yeomans, N. Uchida, Soft Matter 7, 3074 (2011).

    Article  ADS  Google Scholar 

  43. F. Alouges, A. Desimone, L. Heltai, A. Lefebvre-Lepot, B. Merlet, arxiv:1007.4920v2.

  44. H. Löwen, J. Phys.: Condens. Matter 13, R415 (2001).

    Article  Google Scholar 

  45. M. Leoni, J. Kotar, B. Bassetti, P. Cicuta, M. Cosentino Lagomarsino, Soft Matter 5, 472 (2008).

    Article  ADS  Google Scholar 

  46. R. Wittkowski, H. Löwen, Phys. Rev. E 85, 021406 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ledesma-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledesma-Aguilar, R., Löwen, H. & Yeomans, J.M. A circle swimmer at low Reynolds number. Eur. Phys. J. E 35, 70 (2012). https://doi.org/10.1140/epje/i2012-12070-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12070-5

Keywords

Navigation