Skip to main content
Log in

Simulating self-organized molecular patterns using interaction-site models

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model. The geometry of the building blocks, the symmetry of the underlying substrate, and the strength and range of interactions encode the self-assembly process. By means of Monte Carlo simulations, we have predicted an ample variety of ordering motifs which nicely reproduce the experimental results. Here, we explore in detail the phase behavior of the system in terms of the temperature and the lattice constant of the underlying substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bartels, Nat. Chem. 2, 87 (2010).

    Article  Google Scholar 

  2. J.V. Barth, G. Costantini, K. Kern, Nature 437, 671 (2005).

    Article  ADS  Google Scholar 

  3. J.M. Lehn, Science 295, 2400 (2002).

    Article  ADS  Google Scholar 

  4. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000).

    Article  ADS  Google Scholar 

  5. G. Tomba, L. Ciacchi, A.D. Vita, Adv. Mat. 21, 1055 (2009).

    Article  Google Scholar 

  6. D. Shi et al., Phys. Rev. Lett. 96, 226101 (2006).

    Article  ADS  Google Scholar 

  7. W. Chen, H. Li, H. Huang, Y. Fu, H.L. Zhang, J. Ma, A.T.S. Wee, J. Am. Chem. Soc. 130, 12286 (2008).

    Google Scholar 

  8. B. Ilan, G.M. Florio, M.S. Hybertsen, B.J. Berne, G.W. Flynn, Nano Lett. 8, 3160 (2008).

    Article  ADS  Google Scholar 

  9. H. Glowatzki, B. Bröker, R.P. Blum, O.T. Hofmann, A. Vollmer, R. Rieger, K. Mullen, E. Zojer, J.P. Rabe, N. Koch, Nano Lett. 8, 3825 (2008).

    Article  ADS  Google Scholar 

  10. A. Breitruck, H.E. Hoster, R.J. Behm, J. Phys. Chem. C 113, 21265 (2009).

    Article  Google Scholar 

  11. F. Silly, U. Weber, A. Shaw, V. Burlakov, M. Castell, G. Briggs, D. Pettifor, Phys. Rev. B 77, 201408 (2008).

    Article  ADS  Google Scholar 

  12. U. Weber, V.M. Burlakov, L. Perdigao, R. Fawcett, P. Beton, N. Champness, J. Jefferson, G. Briggs, D. Pettifor, Phys. Rev. Lett. 100, 156101 (2008).

    Article  ADS  Google Scholar 

  13. C. Rohr, M. Balbás Gambra, K. Gruber, E.C. Constable, E. Frey, T. Franosch, B.A. Hermann, Nano Lett. 10, 833 (2010).

    Article  ADS  Google Scholar 

  14. B.A. Hermann, C. Rohr, M. Balbás Gambra, A. Malecki, M.S. Malarek, E. Frey, T. Franosch, Phys. Rev. B 82, 165451 (2010).

    Article  ADS  Google Scholar 

  15. C. Rohr, M. Balbás Gambra, K. Gruber, E.C. Constable, T. Franosch, B.A. Hermann, Chem. Comm. 47, 1800 (2011).

    Article  Google Scholar 

  16. C.J. Hawker, J.M.J. Fréchet, J. Am. Chem. Soc. 112, 7638 (1990).

    Article  Google Scholar 

  17. C.J. Hawker, J.M.J. Fréchet, J. Chem. Soc. Chem. Commun. 15, 1010 (1990).

    Article  Google Scholar 

  18. B.A. Hermann, L.J. Scherer, C.E. Housecroft, E.C. Constable, Adv. Funct. Mater. 16, 221 (2006).

    Article  Google Scholar 

  19. E.C. Constable, M. Haeusler, B.A. Hermann, C.E. Housecroft, M. Neuburger, S. Schaffner, L.J. Scherer, Cryst. Eng. Comm. 9, 176 (2007).

    Article  Google Scholar 

  20. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  Google Scholar 

  21. S. Yin, C. Wang, X. Qiu, B. Xu, C. Bai, Surf. Interface Anal. 32, 248 (2001).

    Article  Google Scholar 

  22. F. Tournus, S. Latil, M.I. Heggie, J.C. Charlier, Phys. Rev. B 72, 075431 (2005).

    Article  ADS  Google Scholar 

  23. J.P. Garrahan, A. Stannard, M.O. Blunt, P.H. Beton, Proc. Natl. Acad. Sci. U.S.A. 106, 15209 (2009).

    Article  ADS  Google Scholar 

  24. K. Tahara, E. Ghijsens, M. Matsushita, P. Szabelski, S. De Feyter, Y. Tobe, Chem. Commun. 47, 11459 (2011).

    Article  Google Scholar 

  25. P. Szabelski, S. De Feyter, M. Drach, S. Lei, Langmuir 26, 9506 (2010).

    Article  Google Scholar 

  26. D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications (Academic Press, 2002). .

  27. D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics (Cambridge University Press, 2005).

  28. K. Binder, D. Heermann, Monte Carlo simulation in statistical physics: an introduction (Springer Verlag, 2002).

  29. S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Kirkpatrick, C. Gelatt, M. Vecchi, Science 220, 671 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. V. Černy, J. Optim. Theor. Appl. 45, 41 (1985).

    Article  MATH  Google Scholar 

  32. D. Schattschneider, Am. Math. Mon. 85, 439 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Merz, H.J. Güntherodt, L.J. Scherer, E.C. Constable, C.E. Housecroft, M. Neuburger, B.A. Hermann, Chemistry 11, 2307 (2005).

    Article  Google Scholar 

  34. S. Forrest, Science 261, 872 (1993).

    Article  ADS  Google Scholar 

  35. J.H. Holland, Sci. Am. 267, 66 (1992).

    Article  ADS  Google Scholar 

  36. J. Fornleitner, F.L. Verso, G. Kahl, C.N. Likos, Soft Matter 4, 480 (2008).

    Article  ADS  Google Scholar 

  37. D. Gottwald, G. Kahl, C.N. Likos, J. Chem. Phys. 122, 204503 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Franosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbás Gambra, M., Rohr, C., Gruber, K. et al. Simulating self-organized molecular patterns using interaction-site models. Eur. Phys. J. E 35, 25 (2012). https://doi.org/10.1140/epje/i2012-12025-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12025-x

Keywords

Navigation