Skip to main content
Log in

Dielectric and molecular dynamics study of the secondary relaxations of poly(styrene-co-methylmethacrylate) copolymers: Influence of the molecular architecture

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The effect of the structure of copolymers (random, alternate or diblock) on their dynamics has been studied by dielectric spectroscopy. Six copolymers of styrene and methyl methacrylate (three diblocks, one alternate and two random) have been studied. The results show that the sub- T g transitions of the diblock samples can be described by one asymmetric Havriliak-Negami (HN) function, while two are necessary for the rest of the copolymers (β and γ relaxations). The characteristic times of the sub- T g relaxations show an Arrhenius temperature dependence and there is a strong coupling of the α and β relaxations at high temperatures. The deconvolution of the merging relaxations has been made in the framework of the Williams Ansatz set out in terms of Havriliak-Negami distributions. Because the 2D 2H-NMR results excluded any significant contribution from the rotation of the methoxy group of the methacrylate group around the C-OCH3 bond, the γ relaxation may be assigned to the rotation of the methyl methacrylate group in a styrene-rich environment. The Molecular Dynamics simulations of a poly(methyl methacrylate) homopolymer and of the alternate copolymer are in qualitative agreement with the experimental results, although they predict smaller values for the activation energy of the sub- T g relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Paul, C.B. Bucknall (Editors), Polymer Blends, Vol. 1 (Wiley, New York, 2000).

  2. I.W. Hamley, The Physics of Block Copolymers (Oxford University Press, Oxford, 1998).

  3. J.M.G. Cowie, Polymers: Chemistry and Physics of Modern Materials, 2nd edition (Chapman and Hall, London, 1991).

  4. T. Kokata, K. Adachi, Macromol. Symp. 3, 124 (1997).

    Google Scholar 

  5. I. Alig, F. Kremer, G. Fytas, J. Roovers, Macromolecules 25, 5277 (1992).

    Article  ADS  Google Scholar 

  6. K. Karatasos, S.H. Anastasiadis, G. Floudas, G. Fytas, S. Pispas, H. Hadjichristidis, T. Pakula, Macromolecules 29, 1326 (1996).

    Article  ADS  Google Scholar 

  7. A. Kyritsis, P. Pisis, S.-M. Mai, C. Booth, Macromolecules 33, 4581 (2000).

    Article  ADS  Google Scholar 

  8. S. Moreno, R.G. Rubio, Macromolecules 35, 5483 (2002).

    Article  ADS  Google Scholar 

  9. L. Ma, Ch. He, T. Suzuki, M. Azuma, Y. Bin, H. Kurosu, M. Matsuo, Macromolecules 36, 8056 (2003).

    Article  ADS  Google Scholar 

  10. M. Encinar, E. Guzmán, M.G. Prolongo, R.G. Rubio, C. Sandoval, F. Gonzalez-Nilo, L. Gargallo, D. Radic, Polymer 49, 168 (2008).

    Article  Google Scholar 

  11. A. Zetsche, E.W. Fischer, Acta. Polym. 45, 168 (1994).

    Article  Google Scholar 

  12. A. Sanchis, M.G. Prolongo, R.M. Masegosa, R.G. Rubio, Macromolecules 28, 2693 (1995).

    Article  ADS  Google Scholar 

  13. M. Wübbenhorst, V. Lupascu, Proc. ISE-12 (2005), DOI:10.1109/ISE.2005.1612325.

  14. O. Van den Berg, M. Wübbenhorst, S.J. Picken, W.F. Jager, J. Non-Cryst. Solids 351, 2694 (2005).

    Article  ADS  Google Scholar 

  15. A-V.G. Ruzette, P. Banerjee, A.M. Mayes, M. Pollard, T.P. Russell, R. Jerome, S.R. Hjelm, P. Thiyarajan, Macromolecules 31, 8509 (1998).

    Article  ADS  Google Scholar 

  16. T.P. Russell, R.P. Hjelm, P.A. Seeger, Macromolecules 23, 890 (1990).

    Article  ADS  Google Scholar 

  17. T.E. Karis, T.P. Russell, Y. Gallot, A.M. Mayes, Macromolecules 28, 1129 (1995).

    Article  ADS  Google Scholar 

  18. H. Ahn, D.Y. Ryu, Y. Kim, K.W. Kwon, J. Lee, J. Cho, Macromolecules 42, 7897 (2009).

    Article  ADS  Google Scholar 

  19. V. Lupascu, S.J. Picken, M. Wübbenhorst, J. Non-Cryst. Solids 352, 5594 (2006).

    Article  ADS  Google Scholar 

  20. R. Bergman, F. Alvarez, A. Alegría, J. Colmenero, J. Non-Cryst. Solids 235-238, 580 (1998).

    Article  ADS  Google Scholar 

  21. A. Arbe, A-C. Genix, J. Colmenero, D. Richter, P. Fouquet, Soft Matter 4, 1792 (2008).

    Article  ADS  Google Scholar 

  22. K. Schmidt-Rohr, A.S. Kulik, H.W. Beckhan, A. Ohlemacher, U Pawelzik, C. Boeffel, H.W. Spiess, Macromolecules 27, 4733 (1994).

    Article  ADS  Google Scholar 

  23. J.F. de Dens, G.P. Souza, W.A. Corradini, T.D.Z. Atvars, L. Akcelrud, Macromolecules 38, 6938 (2004).

    ADS  Google Scholar 

  24. M. Vacatello, P.J. Flory, Macromolecules 19, 405 (1986).

    Article  ADS  Google Scholar 

  25. V. Morais, M. Encinar, M.G. Prolongo, R.G. Rubio, Polymer 47, 2349 (2006).

    Article  Google Scholar 

  26. T. Pakula, G. Floudas, in Block Copolymers, edited by F. Baltá-Calleja, Z. Roslaniec (Marcel Dekker, New York, 2000).

  27. S. Theobald, W. Pechold, B. Stoll, Polymer 42, 289 (2001).

    Article  Google Scholar 

  28. R. Bergman, F. Alvarez, A. Alegría, J. Colmenero, J. Chem. Phys. 109, 7546 (1998).

    Article  ADS  Google Scholar 

  29. D. Gómez, A. Alegría, A. Arbe, J. Colmenero, Macromolecules 34, 503 (2001).

    Article  ADS  Google Scholar 

  30. G. Domínguez-Espinosa, D. Ginestar, M.J. Sanchís, R. Díaz Calleja, E. Riande, J. Chem. Phys. 129, 104513 (2008).

    Article  ADS  Google Scholar 

  31. G. Williams, C.D. Watts, in NMR. Basic Principles and Progress edited by P. Diehl, E. Fluck, H. Gunther, J.B. Robert, Vol. 4 (Springer-Verlag, Berlin, 1971).

  32. M.G. Prolongo, C. Salom, R.M. Masegosa, S. Moreno, R.G. Rubio, Polymer 38, 5097 (1997).

    Article  Google Scholar 

  33. H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, J. Am. Chem. Soc. 116, 2978 (1994).

    Article  Google Scholar 

  34. E. Saiz, J.P. Hummel, P.J. Flory, M. Plavsic, J. Phys. Chem. 85, 3211 (1981).

    Article  Google Scholar 

  35. S. Havriliak jr, S.J. Havriliak, Dielectric and Mechanical Relaxation in Materials: Analysis, Interpretation, and Application to Polymers, chapt. 1 (Hanser Verlag, New York, 1997).

  36. J. Weese, Comput. Phys. Commun. 77, 429 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Moreno, R.G. Rubio, G. Luengo, F. Ortega, M.G. Prolongo, Eur. Phys. J. E 4, 173 (2001).

    Article  Google Scholar 

  38. R. Zorn, J. Polym. Sci., Polym. Phys. B 38, 1043 (1999).

    Article  ADS  Google Scholar 

  39. E. Schlosser, A. Schönhals, Colloid Polym. Sci. 267, 963 (1989).

    Article  Google Scholar 

  40. E. Riande, R. Díaz-Calleja, Electrical Properties of Polymers, chapt. 4 (Marcel Dekker, New York, 2004).

  41. K.L. Ngai, M. Paluch, J. Chem. Phys. 120, 857 (2004).

    Article  ADS  Google Scholar 

  42. S. Mashimo, S. Yagihara, Y. Iwasa, J. Polym. Sci., Polym. Phys. Ed. 16, 1761 (1978).

    Article  ADS  Google Scholar 

  43. C.A. Angell, Science 267, 1924 (1995).

    Article  ADS  Google Scholar 

  44. K.L. Ngai, Macromolecules 32, 7140 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Encinar, M., Prolongo, M.G., Rubio, R.G. et al. Dielectric and molecular dynamics study of the secondary relaxations of poly(styrene-co-methylmethacrylate) copolymers: Influence of the molecular architecture. Eur. Phys. J. E 34, 134 (2011). https://doi.org/10.1140/epje/i2011-11134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11134-4

Keywords

Navigation