Skip to main content
Log in

Stress distribution of faceted particles in a silo after its partial discharge

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present experimental and numerical results of the effect that a partial discharge has on the morphological and micro-mechanical properties of non-spherical, convex particles in a silo. The comparison of the particle orientation after filling the silo and its subsequent partial discharge reveals important shear-induced orientation, which affects stress propagation. For elongated particles, the flow induces an increase in the packing disorder which leads to a reduction of the vertical stress propagation developed during the deposit generated prior to the partial discharge. For square particles, the flow favors particle alignment with the lateral walls promoting a behavior opposite to the one of the elongated particles: vertical force transmission, parallel to gravity, is induced. Hence, for elongated particles the flow developed during the partial discharge of the silo leads to force saturation with depth whereas for squares the flow induces hindering of the force saturation observed during the silo filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Pöschel, T. Schwager, Computational Granular Dynamics (Springer-Verlag, Berlin, Heidelberg, New York, 2005).

  2. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996).

    Article  ADS  Google Scholar 

  3. I.S. Aranson, L.S. Tsimringy, Rev. Mod. Phys. 78, 641 (2006).

    Article  ADS  Google Scholar 

  4. J.A.C. Gallas, S. Sokolowski, Int. J. Mod. Phys. B 7, 2037 (1993).

    Article  ADS  Google Scholar 

  5. P.W. Cleary, M.L. Sawley, Appl. Math. Modell. 6, 89 (2001).

    Google Scholar 

  6. F. Alonso-Marroquín, H.B. Muhlhaus, H.J. Hermann, Particuology 6, 390 (2008).

    Article  Google Scholar 

  7. F. Alonso-Marroquín, Y. Wang, Granular Matter 11, 317 (2009).

    Article  Google Scholar 

  8. S.A. Galindo-Torres, F. Alonso-Marroquín, Y.C. Wang, D. Pedroso J.D. Muñoz Castaño, Phys. Rev. E 79, 060301 (2009).

    Article  ADS  Google Scholar 

  9. F.X. Villarruel, B.E. Lauderdale, D.M. Mueth, H.M. Jaeger, Phys. Rev. E 61, 6914 (2000).

    Article  ADS  Google Scholar 

  10. A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S. Torquato, P.M. Chaikin, Science 303, 990 (2004).

    Article  ADS  Google Scholar 

  11. Z. Zhong, J.Y. Ooi, J.M. Rotter, Eng. Struct. 23, 756 (2001).

    Article  Google Scholar 

  12. J. Blouwolff, S. Fraden, EPL 76, 1095 (2006).

    Article  ADS  Google Scholar 

  13. K. Desmond, S.V. Franklin, Phys. Rev. E. 73, 031306 (2006).

    Article  ADS  Google Scholar 

  14. I. Zuriguel, T. Mullin, J.M. Rotter, Phys. Rev. Lett. 98, 028001 (2007).

    Article  ADS  Google Scholar 

  15. I. Zuriguel, T. Mullin, Proc. R. Soc. London, Ser. A 464, 99 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  16. Vijay Narayan, Narayanan Menon, Sriram Ramaswamy, J. Stat. Mech., P01005 (2006).

  17. G. Lumay, N. Vandewalle, Phys. Rev. E 70, 051314 (2004).

    Article  ADS  Google Scholar 

  18. G. Lumay, N. Vandewalle, Phys. Rev. E 74, 021301 (2006).

    Article  ADS  Google Scholar 

  19. E. Azéma, F. Radjai, R. Peyroux, Phys. Rev. E 76, 011301 (2007).

    Article  ADS  Google Scholar 

  20. E. Azéma, F. Radjai, G. Saussine, Mech. Mater. 41, 729 (2009).

    Article  Google Scholar 

  21. E. Azéma, F. Radjai, Phys. Rev. E 81, 051304 (2010).

    Article  ADS  Google Scholar 

  22. R.C. Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Phys. Rev. Lett. 103, 118001 (2009).

    Article  ADS  Google Scholar 

  23. R.C Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, J. Stat. Mech., P06025 (2010).

  24. T. Kanzaki, R.C. Hidalgo, D. Maza, I. Pagonabarraga, J. Stat. Mech., P06020 (2010).

  25. C. Nouguier-Lehon, B. Cambou, E. Vincens, Int. J. Numer. Anal. Meth. Geomech. 27, 1207 (2003).

    Article  MATH  Google Scholar 

  26. R.L. Brown, J.C. Richards, Principles of powder mechanics: essays on the packing and flow of powders and bulk solids (Pergamon Press, 1970).

  27. P.A. Langston, U. Tuzun, D.M. Heyes, Chem. Engin. Sci. 50, 967 (1995).

    Article  Google Scholar 

  28. J.M. Rotter, J.M.F.G. Holst, J.Y. Ooi, A.M. Sanad, Philos. Trans.: Math., Phys. Eng. Sci. 356, 2685 (1998).

    Article  ADS  Google Scholar 

  29. M. Guaita, A. Couto, F. Ayuga, Biosyst. Engin. 85, 101 (2003).

    Article  Google Scholar 

  30. A. Janda, I. Zuriguel, A. Garcimartín, L.A. Pugnaloni, D. Maza, EPL 84, 44002 (2008).

    Article  ADS  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).

  32. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979).

    Article  Google Scholar 

  33. G. Duvaut, J.-L. Lions, Les Inéquations en Mécanique et en Physique (Dunod, Paris, 1972).

  34. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

  35. K. Stokely, A. Diacou, S.V. Franklin, Phys. Rev. E. 67, 051302 (2003).

    Article  ADS  Google Scholar 

  36. I. Bartos, I.M. Janosi, Granular Matter 9, 81 (2007).

    Article  ADS  Google Scholar 

  37. I. Zuriguel, T. Mullin, A. Arevalo, Phys. Rev. E. 77, 061307 (2008).

    Article  ADS  Google Scholar 

  38. D. Schulze, Powders and Bulk Solids. Behaviour, Characterization, Storage and Flow (Springer-Verlag, Berlin, Heidelberg, 2008).

  39. B.J. Glasser, I. Goldhirsch, Phys. Fluids 13, 407 (2001).

    Article  ADS  Google Scholar 

  40. I. Goldhirsch, C. Goldenberg, Eur. Phys. J. E 9, 245 (2002).

    Article  Google Scholar 

  41. M. Lätzel, S. Luding, H.J. Herrmann, Granular Matter 2, 123 (2000).

    Article  Google Scholar 

  42. M. Madadi, O. Tsoungui, M. Lätzel, S. Luding, Int. J. Solid Struct. 41, 2563 (2004).

    Article  MATH  Google Scholar 

  43. H. A. Janssen, Z. Vereines Deutsch. Ingen. 39, 1045 (1895).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kanzaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzaki, T., Acevedo, M., Zuriguel, I. et al. Stress distribution of faceted particles in a silo after its partial discharge. Eur. Phys. J. E 34, 133 (2011). https://doi.org/10.1140/epje/i2011-11133-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11133-5

Keywords

Navigation