Skip to main content
Log in

Counterion condensation theory of attraction between like charges in the absence of multivalent counterions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

There is abundant experimental evidence suggesting the existence of attractive interactions among identically charged polyelectrolytes in ordinary salt solutions. The presence of multivalent counterions is not required. We review the relevant literature in detail and conclude that it merits more attention than it has received. We discuss also some recent observations of a low ionic strength attraction of negatively charged DNA to the region of a negatively charged glass nanoslit where the floor of the nanoslit meets the walls, again in the absence of multivalent ions. On the theoretical side, it has become clear that purely electrostatic interactions require the presence of multivalent counterions if they are to generate like-charge attraction. Any theory of like-charge attraction in the absence of multivalent counterions must therefore contain a non-electrostatic component. We point out that counterion condensation theory, which has predicted like-charge polyelectrolyte attraction in an intermediate range of distances in ordinary 1:1 salt conditions, contains both electrostatic and non-electrostatic elements. The non-electrostatic component of the theory is the modeling constraint that the counterions fall into two explicit populations, condensed and uncondensed. As reviewed in the paper, this physically motivated constraint is supported by strong experimental evidence. We proceed to offer an explanation of the nanoslit observations by showing in an idealized model that the line of intersection of two intersecting planes is a virtual polyelectrolyte. Since we have previously developed a counterion condensation theory of attraction of two like-charged polyelectrolytes, our suggestion is that the DNA is attracted to the virtual polyelectrolytes that may be located in the nanoslit where floor meets walls. We present the detailed calculations needed to document this suggestion: an extension of previous theory to the case of polyelectrolytes with like but not identical charges; the demonstration of counterion condensation on a plane with bare charge density greater than an explicitly exhibited critical value; a calculation of the free energy of the plane; a calculation of the interaction of a line charge polyelectrolyte with a like-charged plane; and the detailed demonstration that the line of intersection of two planes is a virtual polyelectrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Lin, W.L. Lee, J.M. Schurr, Biopolymers 17, 1046 (1978)

    Google Scholar 

  2. K. Zero, B.R. Ware, J. Chem. Phys. 80, 1610 (1984)

    Article  ADS  Google Scholar 

  3. M. Drifford, J.-P. Dalbiez, Biopolymers 24, 1501 (1985)

    Article  Google Scholar 

  4. H. Matsuoka, D. Schwahn, N. Ise, Macromolecules 24, 4227 (1991)

    Article  ADS  Google Scholar 

  5. M. Sedlák, E.J. Amis, J. Chem. Phys. 96, 817 (1992)

    Article  ADS  Google Scholar 

  6. M. Sedlák, E.J. Amis, J. Chem. Phys. 96, 826 (1992)

    Article  ADS  Google Scholar 

  7. M.E. Ferrari, V.A. Bloomfield, Macromolecules 25, 5266 (1992)

    Article  ADS  Google Scholar 

  8. K.R. Bruno, W.L. Mattice, Macromolecules 25, 327 (1992)

    Article  ADS  Google Scholar 

  9. M. Sedlák, Macromolecules 26, 1158 (1993)

    Article  ADS  Google Scholar 

  10. M. Sedlák, J. Chem. Phys. 101, 10140 (1994)

    Article  ADS  Google Scholar 

  11. P. Wissenburg, T. Odijk, P. Cirke, M. Mandel, Macromolecules 28, 2315 (1995)

    Article  ADS  Google Scholar 

  12. M. Sedlák, J. Chem. Phys. 105, 10123 (1996)

    Article  ADS  Google Scholar 

  13. B.D. Ermi, E.J. Amis, Macromolecules 29, 2701 (1996)

    Article  ADS  Google Scholar 

  14. M. Sedlák, J. Chem. Phys. 107, 10805 (1997)

    Article  ADS  Google Scholar 

  15. W. Nierling, E. Nordmeier, Polym. J. 29, 795 (1997)

    Article  Google Scholar 

  16. R. Borsali, H. Nguyen, R. Pecora, Macromolecules 31, 1548 (1998)

    Article  ADS  Google Scholar 

  17. B.D. Ermi, E.J. Amis, Macromolecules 31, 7378 (1998)

    Article  ADS  Google Scholar 

  18. M. Bockstaller, W.Köhler, G. Wegner, D. Vlassopoulos, G. Fytas, Macromolecules 34, 6359 (2001)

    Article  ADS  Google Scholar 

  19. D. Wang, J. Lal, D. Moses, G.C. Bazan, A.J. Heeger, Chem. Phys. Lett. 348, 411 (2001)

    Article  ADS  Google Scholar 

  20. D. Wang, D. Moses, G.C. Bazan, A.J. Heeger, J. Lal, J. Macromol. Sci.-Pure Appl. Chem. A 38, 1175 (2001)

    Article  Google Scholar 

  21. D. Wang, Ph D. Dissertation, Department of Materials Science, University of California at Santa Barbara (2001)

  22. Y. Zhang, J.F. Douglas, B.D. Ermi, E.J. Amis, J. Chem. Phys. 114, 3299 (2001)

    Article  ADS  Google Scholar 

  23. M. Krishnan, I. Mönch, P. Schwille, Nano Lett. 7, 1270 (2007)

    Article  ADS  Google Scholar 

  24. M. Krishman, Z. Petrášek, I. Mönch, P. Schwille, Small 4, 1900 (2008)

    Article  Google Scholar 

  25. P.-K. Lin, K.-H. Lin, C.-C. Fu, K.-C. Lee, P.-K. Wei, W.-W. Pai, P.-H. Tsao, Y.-L. Chen, W.S. Fann, Macromolecules 42, 1770 (2009)

    Article  ADS  Google Scholar 

  26. H. Washizu, K. Kikuchi, J. Phys. Chem. B 110, 2855 (2006)

    Article  Google Scholar 

  27. X. Schlagberger, R.R. Netz, EPL 83, 36003 (2008)

    Article  ADS  Google Scholar 

  28. G.S. Manning, Eur. Phys. J. E 30, 411 (2009)

    Article  Google Scholar 

  29. F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971)

  30. L. Guldbrand, L.G. Nilsson, L. Nordenskiöld, J. Chem. Phys. 85, 6686 (1986)

    Article  ADS  Google Scholar 

  31. N. Gronbech-Jensen, R.J. Mashi, R.F. Bruinsma, W.M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997)

    Article  ADS  Google Scholar 

  32. I. Rouzina, V.A. Bloomfield, J. Phys. Chem. 100, 9977 (1996)

    Article  Google Scholar 

  33. B.-Y. Ha, A.J. Liu, Phys. Rev. Lett. 79, 1289 (1997)

    Article  ADS  Google Scholar 

  34. J.J. Arenzon, J.F. Stilck, Y. Levin, Eur. Phys. J. B 12, 79 (1999)

    Article  ADS  Google Scholar 

  35. A. Kornyshev, S. Leikin, Phys. Rev. Lett. 82, 4138 (1999)

    Article  ADS  Google Scholar 

  36. B.I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999)

    Article  ADS  Google Scholar 

  37. M.J. Stevens, Phys. Rev. Lett. 82, 101 (1999)

    Article  ADS  Google Scholar 

  38. R.R. Netz, Eur. Phys. J. E 5, 557 (2001)

    Article  Google Scholar 

  39. X. Yu, A.E. Carlsson, Biophys. J. 85, 3532 (2003)

    Article  Google Scholar 

  40. A. Naji, A. Arnold, C. Holm, R.R. Netz, Europhys. Lett. 67, 130 (2004)

    Article  ADS  Google Scholar 

  41. M. Sayar, C. Holm, Phys. Rev. E 82, 031901 (2010)

    Article  ADS  Google Scholar 

  42. S. Lee, T.T. Le, T.T. Nguyen, Phys. Rev. Lett. 105, 248101 (2010)

    Article  ADS  Google Scholar 

  43. J. Lelko, A. Iglič, V. Kralj-Iglič, P.B. Sunil Kumar, J. Chem. Phys. 133, 204901 (2010)

    Article  ADS  Google Scholar 

  44. G.S. Manning, Q. Revs. Biophys. 11, 179 (1978)

    Article  Google Scholar 

  45. G.S. Manning, Ber. Bunsenges. Phys. Chem. 100, 909 (1996)

    Article  Google Scholar 

  46. G.S. Manning, Physica A, 231, 236 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  47. G.S. Manning, Biophys. Chem. 101-102, 461 (2002)

    Article  Google Scholar 

  48. T. Odijk, Macromolecules 27, 4998 (1994)

    Article  ADS  Google Scholar 

  49. J. Ray, G.S. Manning, Langmuir 10, 2450 (1994)

    Article  Google Scholar 

  50. J. Ray, G.S. Manning, Macromolecules 30, 5739 (1997)

    Article  ADS  Google Scholar 

  51. J. Ray, G.S. Manning, Macromolecules 32, 4588 (1999)

    Article  ADS  Google Scholar 

  52. J. Ray, G.S. Manning, Macromolecules 33, 2901 (2000)

    Article  ADS  Google Scholar 

  53. S. Pietronave, L. Arcesi, C. D’Arrigo, A. Perico, J. Phys. Chem. B 112, 15991 (2008)

    Article  Google Scholar 

  54. A. Perico, A. Rapallo, J. Chem. Phys. 134, 055108 (2011)

    Article  ADS  Google Scholar 

  55. H. Long, A. Kudlay, G.C. Schatz, J. Phys. Chem. B 110, 2918 (2006)

    Article  Google Scholar 

  56. M. Muthukumar, J. Chem. Phys. 105, 5183 (1996)

    Article  ADS  Google Scholar 

  57. J. Herzfeld, Accts. Chem. Res. 29, 31 (1996)

    Article  Google Scholar 

  58. X.Q. Qiu, L.W. Kwok, H.Y. Park, J.S. Lamb, K. Andresen, L. Pollack, Phys. Rev. Lett. 96, 138101 (2006)

    Article  ADS  Google Scholar 

  59. C. Danilowicz, C.H. Lee, K. Kim, K. Hatch, V.W. Coljee, N. Kleckner, M. Prentiss, Proc. Natl. Acad. Sci. U.S.A. 106, 19824 (2009)

    Article  Google Scholar 

  60. M. Sedlák, J. Phys. Chem. B 110, 13976 (2006)

    Article  Google Scholar 

  61. A. Savelyev, G.A. Papoian, J. Am. Chem. Soc. 129, 6060 (2007)

    Article  Google Scholar 

  62. B. Luan, A. Aksimentiev, J. Am. Chem. Soc. 130, 15754 (2008)

    Article  Google Scholar 

  63. A. Ikegami, J. Polym. Sci. A 2, 907 (1964)

    Google Scholar 

  64. R. Zana, C. Tondre, M. Rinaudo, M. Milas, J. Chim. Phys. 68, 1258 (1971)

    Google Scholar 

  65. C.F. Anderson, M.T. Record jr., P.A. Hart, Biophys. Chem. 7, 301 (1978)

    Article  Google Scholar 

  66. U.F. Keyser, B.N. Koeleman, S. Van Dorp, D. Krapf, R.M.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Nat. Phys. 2, 473 (2006)

    Article  Google Scholar 

  67. S. van Dorp, U.L. Keyser, N.H. Dekker, C. Deeker, S.G. Lemay, Nat. Phys. 5, 347 (2009)

    Article  Google Scholar 

  68. M.A. Young, B. Jayaram, D.L. Beveridge, J. Am. Chem. Soc. 119, 59 (1997)

    Article  Google Scholar 

  69. S.Y. Ponomarev, K.M. Thayer, D.L. Beveridge, Proc. Natl. Acad. Sci. U.S.A. 101, 14771 (2004)

    Article  ADS  Google Scholar 

  70. B. Jayaram, S. Swaminathan, D.L. Beveridge, Macromolecules 23, 3156 (1990)

    Article  ADS  Google Scholar 

  71. R.R. Netz, H. Orland, Eur. Phys. J. E 11, 301 (2003)

    Article  Google Scholar 

  72. E. Trizac, M. Aubouy, L. Bocquet, J. Phys.: Condens. Matter 15, S291 (2003)

    Article  ADS  Google Scholar 

  73. J. Ray, G.S. Manning, Langmuir 10, 962 (1994)

    Article  Google Scholar 

  74. K. Kang, J.K.G. Dhont, EPL 84, 14005 (2008)

    Article  ADS  Google Scholar 

  75. G.S. Manning, J. Phys. Chem. B 111, 8554 (2007)

    Article  Google Scholar 

  76. G.V. Ramanathan, J. Chem. Phys. 88, 3887 (1988)

    Article  ADS  Google Scholar 

  77. G.S. Manning, J. Phys. Chem. B 114, 5435 (2010)

    Article  Google Scholar 

  78. S.A. Pandit, M.L. Berkowitz, Biophys. J. 82, 1818 (2002)

    Article  Google Scholar 

  79. B.H. Zimm, M. Le Bret, J. Biomol. Struct. Dyn. 1, 461 (1983)

    Article  Google Scholar 

  80. F. Gröhn, M. Antonietti, Macromolecules 33, 5938 (2000)

    Article  ADS  Google Scholar 

  81. B.V.R. Tata, P.S. Mohanty, M.C. Valsakumar, Solid State Commun. 147, 360 (2008)

    Article  ADS  Google Scholar 

  82. G.S. Manning, Macromolecules 40, 8071 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Manning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, G.S. Counterion condensation theory of attraction between like charges in the absence of multivalent counterions. Eur. Phys. J. E 34, 132 (2011). https://doi.org/10.1140/epje/i2011-11132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11132-6

Keywords

Navigation