Skip to main content
Log in

Rubber friction: Comparison of theory with experiment

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We have measured the friction force acting on a rubber block slid on a concrete surface. We used both unfilled and filled (with carbon black) styrene butadiene (SB) rubber and have varied the temperature from −10 °C to 100 °C and the sliding velocity from 1 μm/s to 1000 μm/s. We find that the experimental data at different temperatures can be shifted into a smooth master-curve, using the temperature-frequency shifting factors obtained from measurements of the bulk viscoelastic modulus. The experimental data has been analyzed using a theory which takes into account the contributions to the friction from both the substrate asperity-induced viscoelastic deformations of the rubber, and from shearing the area of real contact. For filled SB rubber the frictional shear stress σf in the area of real contact results mainly from the energy dissipation at the opening crack on the exit side of the rubber-asperity contact regions. For unfilled rubber we instead attribute σf to shearing of a thin rubber smear film, which is deposited on the concrete surface during run in. We observe very different rubber wear processes for filled and unfilled SB rubber, which is consistent with the different frictional processes. Thus, the wear of filled SB rubber results in micrometer-sized rubber particles which accumulate as dry dust, which is easily removed by blowing air on the concrete surface. This wear process seams to occur at a steady rate. For unfilled rubber a smear film forms on the concrete surface, which cannot be removed even using a high-pressure air stream. In this case the wear rate appears to slow down after some run in time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edition (Springer, Heidelberg, 2000).

  2. K.A. Grosch, Proc. R. Soc. London, Ser. A 274, 21 (1963).

    Article  ADS  Google Scholar 

  3. A.N. Gent, J.D. Walter (Editors), The Pneumatic Tire (US Department of Transportation, 2006).

  4. H.B. Pacejka, Tyre and Vehicle Dynamics, 2nd edition (Elsevier, Amsterdam, 2006).

  5. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).

    Article  ADS  Google Scholar 

  6. B.N.J. Persson, J. Phys.: Condens. Matter 18, 7789 (2006).

    Article  ADS  Google Scholar 

  7. G. Heinrich, M. Klüppel, T.A. Vilgis, Comput. Theor. Polym. Sci. 10, 53 (2000).

    Article  Google Scholar 

  8. G. Heinrich, M. Klüppel, Wear 265, 1052 (2008).

    Article  Google Scholar 

  9. M. Klüppel, G. Heinrich, Rubber Chem. Technol. 73, 578 (2000).

    Article  Google Scholar 

  10. S. Westermann, F. Petry, R. Boes, G. Thielen, Kautsch. Gummi Kunstst. 57, 645 (2004).

    Google Scholar 

  11. B.N.J. Persson, A.I. Volokitin, Eur. Phys. J. E 21, 69 (2006).

    Article  Google Scholar 

  12. G. Carbone, B. Lorenz, B.N.J. Persson, A. Wohlers, Eur. Phys. J. E 29, 275 (2009).

    Article  Google Scholar 

  13. B.N.J. Persson, Surf. Sci. 401, 445 (1998).

    Article  ADS  Google Scholar 

  14. A. Le Gal, M. Klüppel, J. Chem. Phys. 123, 014704 (2005).

    Article  ADS  Google Scholar 

  15. B.N.J. Persson, J. Phys.: Condens. Matter 21, 485001 (2009).

    Article  Google Scholar 

  16. M. Mofidi, B. Prakash, B.N.J. Persson, O. Albohr, J. Phys.: Condens. Matter 20, 085223 (2008).

    Article  ADS  Google Scholar 

  17. B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).

    Article  ADS  Google Scholar 

  18. B.N.J. Persson, O. Albohr, C. Creton, V. Peveri, J. Chem. Phys. 120, 8779 (2004).

    Article  ADS  Google Scholar 

  19. B.N.J. Persson, J. Phys.: Condens. Matter 23, 015003 (2011).

    Article  ADS  Google Scholar 

  20. B.N.J. Persson, Eur. Phys. J. E 33, 327 (2010).

    Article  Google Scholar 

  21. D.T. Nguyen, P. Paolino, M.C. Audry, A. Chateauminois, C. Fretigny, Y.L. Chenadec, M. Portigliatti, E. Barthel, J. Adhes. 87, 235 (2011).

    Article  Google Scholar 

  22. A. Le Gal, M. Klüppel, J. Phys.: Condens. Matter 20, 015007 (2008).

    Article  ADS  Google Scholar 

  23. B.N.J. Persson, O. Albohr, G. Heinrich, H. Ueba, J. Phys.: Condens. Matter 17, R1071 (2005).

    Article  ADS  Google Scholar 

  24. G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 52, 1267 (2004).

    Article  MATH  ADS  Google Scholar 

  25. S. Yamada, Tribol. Lett. 13, 167 (2002).

    Article  Google Scholar 

  26. B.N.J. Persson, Surf. Sci. Rep. 61, 201 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  27. B.N.J. Persson, E.A. Brener, Phys. Rev. E 71, 036123 (2005).

    Article  ADS  Google Scholar 

  28. G. Carbone, B.N.J. Persson, Phys. Rev. Lett. 95, 114301 (2005).

    Article  ADS  Google Scholar 

  29. G. Carbone, B.N.J. Persson, Eur. Phys. J. E 17, 261 (2005).

    Article  Google Scholar 

  30. I. Sivebaek, V. Samoilov, B.N.J. Persson, to be published.

  31. G. Heinrich, J. Stuve, G. Gerber, Polymer 43, 395 (2002).

    Article  Google Scholar 

  32. C. Creton, H. Lakrout, J. Polym. Sci. B, Polym. Phys. 38, 965 (2000).

    Article  ADS  Google Scholar 

  33. A.N. Gent, J. Schultz, J. Adhesion 3, 281 (1972).

    Article  Google Scholar 

  34. D. Maugis, M. Barquins, J. Phys. D 11, 1989 (1978).

    Article  ADS  Google Scholar 

  35. A.N. Gent, Langmuir 12, 4492 (1996).

    Article  Google Scholar 

  36. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  37. Yew (Y.K. Yew, M. Minn, S.K. Sinha, V.B.C. Tan, Langmuir 27, 5891 (2011)) have shown that when sliding polymer-on-polymer systems, the shear deformation is localized to a band about 3nm thick at the interface of the polymer surfaces.

  38. I. Sivebaek, V. Samolilov, B.N.J. Persson, Eur. Phys. J E 27, 37 (2008).

    Article  Google Scholar 

  39. L. Busse, I. Boubakri, M. Klüppel, Kautsch. Gummi Kunstst., May 2011, p. 35.

  40. B.A. Krick, J.R. Vail, B.N.J. Persson, W.G. Sawyer, Tribology Lett., DOI:10.1007/s11249-011-9870-y.

  41. B.A. Krick, J.R. Vail, W.G. Sawyer, private communication.

  42. K. Vorvolakos, M.K. Chaudhury, Langmuir 19, 6778 (2003).

    Article  Google Scholar 

  43. B.N.J. Persson, I.M. Sivebaek, V.N. Samoilov, K. Zhao, A.I. Volokitin, Z. Zhang, J. Phys.: Condens. Matter 20, 395006 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, B., Persson, B.N.J., Dieluweit, S. et al. Rubber friction: Comparison of theory with experiment. Eur. Phys. J. E 34, 129 (2011). https://doi.org/10.1140/epje/i2011-11129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11129-1

Keywords

Navigation