Skip to main content
Log in

Linear stability analysis of electrohydrodynamic instabilities at fluid interfaces in the “small feature” limit

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The endeavour to effectively harness interfacial electrohydrodynamic instabilities, to create small patterns, involves reducing the wavelength of the instability. This can be accomplished by decreasing the separation between the electrodes which may not always be possible. One may therefore have to reduce the surface tension or increase the applied voltage at a fixed electrode spacing. This can result in the wavelength of the pattern becoming of the same order as the electrode separation. Pease and Russel (J. Chem. Phys. 118, 3790 (2003)) were the first to argue that the commonly used Thin-Film Approximation (TFA) that involves an asymptotic expansion in the small parameter δ = (ε 0 φ 20 /(γh 0))1/2 (where ε 0 is the permittivity of vacuum, φ 0 is the root mean square value of the applied potential, γ is the surface tension and h 0 is the thickness of the thin film) need not always be valid and γ may not be small in experiments. Higher-order corrections to the TFA might therefore be necessary. We extend the Direct Current (DC) field analysis of Pease and Russel to an Alternating Current (AC) field. AC field has been suggested as an effective way of controlling the wavelength of electrohydrodynamic instabilities at fluid-fluid interfaces. Infact, the perfect and leaky dielectric limits can be realised in the same fluid at very high and very low electric field frequencies, respectively. Recently, Roberts and Kumar (J. Fluid Mech. 631, 255 (2009)) carried out an analysis using TFA to investigate AC-field-induced instabilities at air-polymer interfaces. We propose a Generalized Model (GM), without the lubrication approximation, and carry out detailed comparison with the TFA. We consider the top fluid to be air, a perfect dielectric, and the bottom fluid to be a perfect or a leaky dielectric. The analysis is carried out for both DC and AC fields, and the deviation from TFA is expressed in terms of the parameter B = γh 0/(ε 0 φ 20 ) = δ − 2. We discuss variation of the wavelength of the fastest growing mode with frequency of the applied field for any arbitrary value of B, unlike the analysis of Roberts and Kumar which is restricted to B ≫ 1(δ ≪ 1) . We also revisit the analysis of Pease and Russel for instabilities under DC field and present the results in terms of the single parameter, B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoav Tsori, Rev. Mod. Phys. 81, 1471 (2009).

    Article  ADS  Google Scholar 

  2. Ning Wu, William B. Russel, NanoToday 4, 180 (2009).

    Google Scholar 

  3. P. Gambhire, R.M. Thaokar, Phys. Fluids 22, 064103 (2010).

    Article  ADS  Google Scholar 

  4. S.A. Roberts, Satish Kumar, J. Fluid Mech. 631, 255 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. J.M. Reynolds, Phys. Fluids 8, 161 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  6. E.B. Devitt, J.R. Melcher, Phys. Fluids 8, 1193 (1965).

    Article  ADS  Google Scholar 

  7. H. Terasawa, Y.H. Mori, K. Komotori, Chem. Engin. Sci. 38, 567 (1983).

    Article  Google Scholar 

  8. James R. Melcher, Charles V. Smith, Phys. Fluids 12, 778 (1969).

    Article  ADS  Google Scholar 

  9. Erik Schaffer, Thomas Thurn-Albrecht, Thomas P. Russell, Ullrich Steiner, Nature 403, 874 (2000).

    Article  ADS  Google Scholar 

  10. Zhiqun Lin, Tobias Kerle, Shenda M. Baker, David A. Hoagland, Erik Schaffer, Ullrich Steiner, Thomas P. Russell, J. Chem. Phys. 114, 2377 (2001).

    Article  ADS  Google Scholar 

  11. Zhiqun Lin, Tobias Kerle, Thomas P. Russell, Erik Schaffer, Ullrich Steiner, Macromolecules 35, 3971 (2002).

    Article  ADS  Google Scholar 

  12. Mihai D. Morariu, Zhiqun Lin, Thomas P. Russell, Ullrich Steiner, Nature 2, 48 (2002).

    Article  Google Scholar 

  13. Nicoleta E. Voicu, Stephan Harkema, Ullrich Steiner, Adv. Funct. Mater. 16, 926 (2006).

    Article  Google Scholar 

  14. N. Arun, Ashutosh Sharma, Partho S.G. Pattadar, Indrani Banerjee, Hemant M. Dixit, K.S. Narayan, Phys. Rev. Lett. 102, 254502 (2009).

    Article  ADS  Google Scholar 

  15. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  16. Leonard F. Pease, William B. Russel, J. Chem. Phys. 118, 3790 (2003).

    Article  ADS  Google Scholar 

  17. Leonard F. Pease, William B. Russel, J. Non-Newton. Fluid Mech. 102, 233 (2002).

    Article  MATH  Google Scholar 

  18. V. Shankar, Ashutosh Sharma, J. Colloid Interface Sci. 274, 294 (2004).

    Article  Google Scholar 

  19. R.M. Thaokar, V. Kumaran, Phys. Fluids 17, 084104 (2004).

    Article  ADS  Google Scholar 

  20. R.V. Craster, O.K. Matar, Phys. Fluids 17, 032104 (2005).

    Article  ADS  Google Scholar 

  21. D. Merkt, A. Pototsky, M. Bestehorn, Phys. Fluids 17, 064104 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  22. Ruhi Verma, Ashutosh Sharma, Kajari Kargupta, Jaita Bhaumik, Langmuir 21, 3710 (2005).

    Article  Google Scholar 

  23. Ning Wu, Leonard F. Pease III, William B. Russel, Langmuir 21, 12290 (2005).

    Article  Google Scholar 

  24. Ning Wu, William B. Russel, Appl. Phys. Lett. 86, 241912 (2005).

    Article  ADS  Google Scholar 

  25. Michael R. King, Jr. David T. Leighton, Mark J. Mc Cready, Phys. Fluids 11, 833 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Thaokar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambhire, P., Thaokar, R.M. Linear stability analysis of electrohydrodynamic instabilities at fluid interfaces in the “small feature” limit. Eur. Phys. J. E 34, 84 (2011). https://doi.org/10.1140/epje/i2011-11084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11084-9

Keywords

Navigation