Skip to main content
Log in

On the coalescence of sessile drops with miscible liquids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Sessile drops sitting on highly wettable solid substrates fuse in qualitatively different ways after contact, depending on the surface tension gradients between the mixing droplets. In early time evolution the drop coalescence can be fast or delayed (intermittent). In long time evolution a secondary drop formation can occur. We study numerically droplet dynamics during coalescence in two and three spatial dimensions, within a phase field approach. We discuss criteria to distinguish different coalescence regimes. A comparison with recent experiments will be done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wu, T. Cubaud, C.-M. Ho, Phys. Fluids 16, L51 (2004).

    Article  ADS  Google Scholar 

  2. G.F. Christopher, J. Bergstein, N.B. End, M. Poon, N. Nguyen, S.L. Anna, Lab Chip 9, 1102 (2009).

    Article  Google Scholar 

  3. S.T. Thoroddsen, K. Takehara, Phys. Fluids 12, 1265 (2000).

    Article  ADS  MATH  Google Scholar 

  4. H. Aryafar, H.P. Kavehpour, Phys. Fluids 18, 072105 (2006).

    Article  ADS  Google Scholar 

  5. T. Gilet, K. Mulleners, J.P. Lecomte, N. Vandewalle, S. Dorbolo, Phys. Rev. E 75, 036303 (2007).

    Article  ADS  Google Scholar 

  6. F. Blanchette, T.P. Bigioni, J. Fluid Mech. 620, 333 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. D.G.A.L. Aarts, H.N.W. Lekkerkerker, H. Guo, G.H. Wegdam, D. Bonn, Phys. Rev. Lett. 95, 164503 (2005).

    Article  ADS  Google Scholar 

  8. W.D. Ristenpart, P.M. McCalla, R.V. Roy, H.A. Stone, Phys. Rev. Lett. 97, 064501 (2006).

    Article  ADS  Google Scholar 

  9. N. Kapur, P.H. Gaskell, Phys. Rev. E 75, 056315 (2007).

    Article  ADS  Google Scholar 

  10. D.H. Bangham, Z. Saweris, Z. Trans. Faraday Soc. 34, 554 (1938).

    Article  Google Scholar 

  11. H. Riegler, P. Lazar, Langmuir 24, 6395 (2008).

    Article  Google Scholar 

  12. S. Karpitschka, H. Riegler, Langmuir 26, 11823 (2010).

    Article  Google Scholar 

  13. S. Karpitschka, H. Riegler, in preparation (2011).

  14. R. Borcia, S. Menzel, M. Bestehorn, S. Karpitschka, H. Riegler, Eur. Phys. J. E 34, 24 (2011).

    Article  Google Scholar 

  15. A.J. Bray, Adv. Phys. 43, 357 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Jasnow, J. Viñals, Phys. Fluids 8, 660 (1996).

    Article  ADS  MATH  Google Scholar 

  17. D.M. Anderson, G.B. McFadden, A.A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Borcia, M. Bestehorn, Phys. Rev. E 67, 066307 (2003).

    Article  ADS  Google Scholar 

  19. L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  20. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  ADS  Google Scholar 

  21. D.J. Korteweg, Arch. Sci. Phys. Nat. 6, 1 (1901).

    MATH  Google Scholar 

  22. N. Bessonov, J.A. Pojman, V. Volpert, J. Engn. Math. 49, 321 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Zoltowski, Y. Chekanov, J. Masere, J.A. Pojman, V. Volpert, Langmuir 23, 5522 (2007).

    Article  Google Scholar 

  24. N. Bessonov, J. Pojman, G. Viner, V. Volpert, B. Zoltowski, Math. Model. Nat. Phenom. 3, 108 (2008).

    Article  MathSciNet  Google Scholar 

  25. P. Colinet, J.C. Legros, M.G. Velarde, Nonlinear Dynamics of Surface Tension (Wiley, Berlin, 2001) p. 127

  26. A.A. Nepomnyashchy, M. Velarde, P. Colinet, Interfacial Phenomena and Convection (Chapman & Hall/CRC, Boca Raton, FL, 2002) p. 262.

  27. C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 1 (Wiley, New York, 1998) p. 201

  28. M. Bestehorn, Hydrodynamik und Strukturbildung (Springer-Verlag, Berlin, 2006) p. 347

  29. R. Borcia, M. Bestehorn, Phys. Rev. E 75, 056309 (2007).

    Article  ADS  Google Scholar 

  30. R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008).

    Article  ADS  Google Scholar 

  31. R. Borcia, I.D. Borcia, M. Bestehorn, Eur. Phys. J. ST 166, 127 (2009).

    Article  Google Scholar 

  32. R. Borcia, M. Bestehorn, Phys. Rev. E 82, 036312 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Borcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borcia, R., Bestehorn, M. On the coalescence of sessile drops with miscible liquids. Eur. Phys. J. E 34, 81 (2011). https://doi.org/10.1140/epje/i2011-11081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11081-0

Keywords

Navigation