Skip to main content
Log in

Salt-modulated structure of polyelectrolyte-macroion complex fibers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The structure and stability of strongly charged complex fibers, formed by complexation of a single long semi-flexible polyelectrolyte chain and many oppositely charged spherical macroions, are investigated numerically at the ground-state level using a chain-sphere cell model. The model takes into account chain elasticity as well as electrostatic interactions between charged spheres and chain segments. Using a numerical optimization method based on a periodically repeated unit cell, we obtain fiber configurations that minimize the total energy. The optimal fiber configurations exhibit a variety of helical structures for the arrangement of macroions including zig-zag, solenoidal and beads-on-a-string patterns. These structures result from the competition between attraction between spheres and the polyelectrolyte chain (which favors chain wrapping around the spheres), chain bending rigidity and electrostatic repulsion between chain segments (which favor unwrapping of the chain), and the interactions between neighboring sphere-chain complexes which can be attractive or repulsive depending on the system parameters such as salt concentration, macroion charge and chain length per macroion (linker size). At about physiological salt concentration, dense zig-zag patterns are found to be energetically most stable when parameters appropriate for the DNA-histone system in the chromatin fiber are adopted. In fact, the predicted fiber diameter in this regime is found to be around 30 nanometers, which roughly agrees with the thickness observed in in vitro experiments on chromatin. We also find a macroion (histone) density of 5–6 per 11nm which agrees with results from the zig-zag or cross-linker models of chromatin. Since our study deals primarily with a generic chain-sphere model, these findings suggest that structures similar to those found for chromatin should also be observable for polyelectrolyte-macroion complexes formed in solutions of DNA and synthetic nano-colloids of opposite charge. In the ensemble where the mean linear density of spheres on the chain is fixed, the present model predicts a phase separation at intermediate salt concentrations into a densely packed complex phase and a dilute phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.U. Bielinska, J.F. Kukowska-Latallo, J.R. Baker Jr., Biochim. Biophys. Acta 1353, 180 (1997).

    Google Scholar 

  2. P.L. Dubin, D.R. Rigsbee, L.-M. Gan, M.A. Fallon, Macromolecules 21, 2555 (1988).

    Article  ADS  Google Scholar 

  3. A. Tsuboi, T. Izumi, M. Hirata. J. Xia, P.L. Dubin, E. Kokufta, Langmuir 12, 6295 (1996).

    Article  Google Scholar 

  4. F. Ganachaud, A. Elaissari, C. Pichot, A. Laayoun, P. Cros, Langmuir 13, 701 (1997).

    Article  Google Scholar 

  5. J.K. Strauss, L.J. Maher, Science 266, 1829 (1994).

    Article  ADS  Google Scholar 

  6. J. Xia, P.L. Dubin, H. Dautzenberg, Langmuir 9, 2015 (1993).

    Article  Google Scholar 

  7. P. Haronska, T.A. Vilgis, R. Grottenmüller, M. Schmidt, Macromol. Theor. Simul. 7, 241 (1998).

    Article  Google Scholar 

  8. D.I. Gittins, F. Caruso, J. Phys. Chem. B 105, 6846 (2001).

    Article  Google Scholar 

  9. D.I. Gittins, F. Caruso, Adv. Mater. 12, 1947 (2000).

    Article  Google Scholar 

  10. Y. Li, P.L. Dubin, H.A. Havel, S.L. Edwards, H. Dautzenberg, Langmuir 11, 2486 (1995).

    Article  Google Scholar 

  11. P.L. Dubin, M.E. Curran, J. Hua, Langmuir 6, 707 (1990).

    Article  Google Scholar 

  12. D.W. McQuigg, J.I. Kaplan, P.L. Dubin, J. Phys. Chem. 96, 1973 (1992).

    Article  Google Scholar 

  13. M. Jonsson, P. Linse, J. Chem. Phys. 115, 3406 (2001).

    Article  ADS  Google Scholar 

  14. M. Jonsson, P. Linse, J. Chem. Phys. 115, 10975 (2001).

    Article  ADS  Google Scholar 

  15. M. Skepö, P. Linse, Macromolecules 36, 508 (2003).

    Article  ADS  Google Scholar 

  16. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of The Cell (Garland Science, Taylor and Francis Group, New York, 2002).

  17. H. Schiessel, W.M. Gelbart, R. Bruinsma, Biophys. J. 80, 1940 (2001).

    Article  Google Scholar 

  18. H. Schiessel, J. Phys.: Condens. Matter 15, R699 (2003).

    Article  ADS  Google Scholar 

  19. R.D. Kornberg, A. Klug, Sci. Am. 244, 48 (1981).

    Article  Google Scholar 

  20. K. Luger, T.J. Richmond, Curr. Opin. Struct. Biol. 8, 33 (1998).

    Article  Google Scholar 

  21. J. Widom, J. Mol. Biol. 190, 411 (1986).

    Article  Google Scholar 

  22. J. Yao, P.T. Lowary, J. Widom, Proc. Natl. Acad. Sci. U.S.A. 87, 7603 (1990).

    Article  ADS  Google Scholar 

  23. K. van Holde, Nature 362, 111 (1993).

    Article  ADS  Google Scholar 

  24. F. Thoma, Th. Koller, A. Klug, J. Cell Biol. 83, 403 (1979).

    Article  Google Scholar 

  25. J. Allan, T. Mitchell, N. Harborne, L. Boehm, C. Crane-Robinson, J. Mol. Biol. 187, 591 (1986).

    Article  Google Scholar 

  26. S.E. Gerchman, V. Ramakrishnan, Proc. Natl. Acad. Sci. U.S.A. 84, 7802 (1987).

    Article  ADS  Google Scholar 

  27. C.L. Woodcock, S.A. Grigoryev, R.A. Horowitz, N. Whitaker, Proc. Natl. Acad. Sci. U.S.A. 90, 9021 (1993).

    Article  ADS  Google Scholar 

  28. J. Bednar, R.A. Horowitz, S.A. Grigoryev, L.M. Carruthers, J.C. Hansen, A.J. Koster, C.L. Woodcock, Proc. Natl. Acad. Sci. U.S.A. 95, 14173 (1998).

    Article  ADS  Google Scholar 

  29. R.A. Horowitz, D.A. Agard, J.W. Sedat, C.L. Woodcock, J. Cell Biol. 125, 1 (1994).

    Article  Google Scholar 

  30. S.H. Leuba, G. Yang, C. Robert, B. Samori, K. van Holde, J. Zlatanova, C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 91, 11621 (1994).

    Article  ADS  Google Scholar 

  31. J.T. Finch, A. Klug, Proc. Natl. Acad. Sci. U.S.A. 73, 1897 (1976).

    Article  ADS  Google Scholar 

  32. A. Worcel, S. Strogatz, D. Riley, Proc. Natl. Acad. Sci. U.S.A. 78, 1461 (1981).

    Article  ADS  Google Scholar 

  33. Y. Cui, C. Bustamente, Proc. Natl. Acad. Sci. U.S.A. 97, 127 (2000).

    Article  ADS  Google Scholar 

  34. V. Katritch, C. Bustamante, W.K. Olson, J. Mol. Biol. 295, 29 (2000).

    Article  Google Scholar 

  35. G. Wedemann, J. Langowski, Biophys. J. 82, 2847 (2002).

    Article  Google Scholar 

  36. H. Schiessel, Europhys. Lett. 58, 140 (2002).

    Article  ADS  Google Scholar 

  37. J. Mozziconacci, J.-M. Victor, J. Struct. Biol. 143, 72 (2003).

    Article  Google Scholar 

  38. J. Mozziconacci, C. Lavelle, M. Barbi, A. Lesne, J.-M. Victor, FEBS Lett. 580, 368 (2006).

    Article  Google Scholar 

  39. C.L. Woodcock, Curr. Opin. Struct. Biol. 16, 213 (2006).

    Article  Google Scholar 

  40. T. Schalch, S. Duda, D.F. Sargent, T.J. Richmond, Nature 436, 138 (2005).

    Article  ADS  Google Scholar 

  41. B. Dorigo, T. Schalch, A. Kulangara, S. Duda, R.R. Schroeder, T.J. Richmond, Science 306, 1571 (2004).

    Article  ADS  Google Scholar 

  42. P.J.J. Robinson, L. Fairall, Van A.T. Huynh, D. Rhodes, Proc. Natl. Acad. Sci. U.S.A. 103, 6506 (2006).

    Article  ADS  Google Scholar 

  43. A.T. Huynh, P.J.J. Robinson, D. Rhodes, J. Mol. Biol. 345, 957 (2005).

    Article  Google Scholar 

  44. J. Langowski, D.W. Heermann, Semin. Cell Dev. Biol. 18, 659 (2007).

    Article  Google Scholar 

  45. J. Langowski, Eur. Phys. J. E 19, 241 (2006).

    Article  Google Scholar 

  46. F. Aumann, F. Lankas, M. Caudron, J. Langowski, Phys. Rev. E 73, 041927 (2006).

    Article  ADS  Google Scholar 

  47. P.M. Diesinger, D.W. Heermann, Phys. Rev. E 74, 031904 (2006).

    Article  ADS  Google Scholar 

  48. P.M. Diesinger, S. Kunkel, J. Langowski, D.W. Heermann, Biophys. J. 99, 2995 (2010).

    Article  ADS  Google Scholar 

  49. P.M. Diesinger, D.W. Heermann, Biophys. J. 94, 4165 (2008).

    Article  ADS  Google Scholar 

  50. P.M. Diesinger, D.W. Heermann, Biophys. J. 97, 2146 (2009).

    Article  ADS  Google Scholar 

  51. D.A. Beard, T. Schlick, Structure 9, 105 (2001).

    Article  Google Scholar 

  52. J. Sun, Q. Zhang, T. Schlick, Proc. Natl. Acad. Sci. U.S.A. 102, 8180 (2005).

    Article  ADS  Google Scholar 

  53. G. Arya, Q. Zhang, T. Schlick, Biophys. J. 91, 133 (2006).

    Article  ADS  Google Scholar 

  54. K. van Holde, J. Zlatanova, Semin. Cell Dev. Biol. 18, 651 (2007).

    Article  Google Scholar 

  55. H. Wong, J.-M. Victor, J. Mozziconacci, PLoS ONE 2, e877 (2007).

    Article  ADS  Google Scholar 

  56. M. Depken, H. Schiessel, Biophys. J. 96, 777 (2009).

    Article  ADS  Google Scholar 

  57. M. Emanuel, N.H. Radja, A. Henriksson, H. Schiessel, Phys. Biol. 6, 025008 (2009).

    Article  ADS  Google Scholar 

  58. M. Kruithof, F.-T. Chien, A. Routh, C. Logie, D. Rhodes, J. van Noort, Nat. Struct. Mol. Biol. 16, 534 (2009).

    Article  Google Scholar 

  59. A. Routh, S. Sandin, D. Rhodes, Proc. Natl. Acad. Sci. U.S.A. 105, 8872 (2008).

    Article  ADS  Google Scholar 

  60. I.M. Kulić, H. Schiessel, Phys. Rev. Lett. 92, 228101 (2004).

    Article  ADS  Google Scholar 

  61. I.M. Kulić, H. Schiessel, Phys. Rev. Lett. 91, 148103 (2003).

    Article  ADS  Google Scholar 

  62. I.M. Kulić, H. Schiessel, Biophys. J. 84, 3197 (2003).

    Article  ADS  Google Scholar 

  63. F. Mohammad-Rafiee, Kulić, H. Schiessel, J. Mol. Biol. 344, 47 (2004).

    Article  Google Scholar 

  64. L. Mollazadeh-Beidokhti, J. Deseigne, D. Lacoste, F. Mohammad-Rafiee, H. Schiessel, Phys. Rev. E 79, 031922 (2009).

    Article  ADS  Google Scholar 

  65. L. Mollazadeh-Beidokhti, F. Mohammad-Rafiee, H. Schiessel, Biophys. J. 96, 4387 (2009).

    Article  ADS  Google Scholar 

  66. K.K. Kunze, R.R. Netz, Phys. Rev. Lett. 85, 4389 (2000).

    Article  ADS  Google Scholar 

  67. K.K. Kunze, R.R. Netz, Phys. Rev. E 66, 011918 (2002).

    Article  ADS  Google Scholar 

  68. H. Boroudjerdi, R.R. Netz, Europhys. Lett. 64, 413 (2003).

    Article  ADS  Google Scholar 

  69. H. Boroudjerdi, R.R. Netz, Europhys. Lett. 71, 1022 (2005).

    Article  ADS  Google Scholar 

  70. H. Boroudjerdi, R.R. Netz, J. Phys.: Condens. Matter 17, S1137 (2005).

    Article  ADS  Google Scholar 

  71. H. Boroudjerdi, Y.-W. Kim, A. Naji, R.R. Netz, X. Schlagberger, A. Serr, Phys. Rep. 416, 129 (2005).

    Article  ADS  Google Scholar 

  72. H. Boroudjerdi, Charged Polymer-Macroion Complexes, PhD thesis (Potsdam University, Potsdam, Germany, 2005).

  73. R.R. Netz, H. Orland, Eur. Phys. J. E 11, 301 (2003).

    Article  Google Scholar 

  74. M. Rief, H. Clausen-Schaumann, H. Gaub, Nat. Struct. Biol. 6, 346 (1999).

    Article  Google Scholar 

  75. C. Frontali, E. Dore, A. Ferrauto, E. Gratton, Biopolymers 18, 1353 (1979).

    Article  Google Scholar 

  76. W.H. Press, B.P. Flanney, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1998).

  77. S.Y. Park, R.F. Bruinsma, W.M. Gelbart, Europhys. Lett. 46, 454 (1999).

    Article  ADS  Google Scholar 

  78. A.Yu. Grosberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002).

    Article  ADS  Google Scholar 

  79. R.R. Netz, J.-F. Joanny, Macromolecules 32, 9026 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boroudjerdi, H., Naji, A. & Netz, R.R. Salt-modulated structure of polyelectrolyte-macroion complex fibers. Eur. Phys. J. E 34, 72 (2011). https://doi.org/10.1140/epje/i2011-11072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11072-1

Keywords

Navigation