The European Physical Journal E

, Volume 32, Issue 3, pp 319–326 | Cite as

Nonlinearities in tilt and layer displacements of planar lipid bilayers

Regular Article

Abstract.

A novel continuum model is proposed to describe the deformations of a planar lipid bilayer suspended across a circular pore. The model is derived within a new theoretical framework for smectic A liquid crystals in which the usual director n , which defines the average orientation of the molecules, is not constrained to be normal to the layers. The free energy is defined by considering the elastic splay of the director, the bending and compression of the lipid bilayer, the cost of tilting the director with respect to the layer normal, the surface tension, and the weak anchoring of the director. Variational methods are used to derive the equilibrium equations and boundary conditions. The resulting boundary value problem is then solved numerically to compute the fully nonlinear displacement of the layers and tilt of the lipid molecules. A parametric study shows that an increase in surface tension produces a decrease in the deformation of the lipid bilayers while an opposite effect is obtained when increasing the anchoring strength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.V. Betangeri, S.A. Jenkins, D.L. Parsons, Liposome Drug Delivery Systems (Technomic Publishing Company, 1993)Google Scholar
  2. 2.
    U. Raviv, D.J. Needleman, Y. Li, H.P. Miller, L. Wilson, C.R. Safinya, Proc. Natl. Acad. Sci. U.S.A. 102, 11167 (2005)CrossRefADSGoogle Scholar
  3. 3.
    T.H. Tien, Nature 227, 1232 (1970)CrossRefADSGoogle Scholar
  4. 4.
    G. Steinberg-Yfrach, P.A. Liddell, S.C. Hung, A.L. Moore, D. Gust, T.A. Moore, J.L. Rigaud, E.N. Durantini, Nature 385, 239 (1997)CrossRefADSGoogle Scholar
  5. 5.
    T.H. Tien, A.L. Ottowa, Colloids Surf. A: Physicochem. Engin. Aspects 149, 217 (1999)CrossRefGoogle Scholar
  6. 6.
    I. Ivnitski, E. Wilkins, H.T. Tien, A. Ottova, Electrochem. Commun. 2, 457 (2000)CrossRefGoogle Scholar
  7. 7.
    K.M. Halverson, R.G. Panchal, T.L. Nguyen, R. Gussio, S.F. Little, M. Misakian, S. Bavari, J.J. Kasianowicz, J. Biol. Chem. 280, 34056 (2005)CrossRefGoogle Scholar
  8. 8.
    E. Reimhult, K. Katthik, Trends Biotechnol. 26, 82 (2008)CrossRefGoogle Scholar
  9. 9.
    R.S. Ries, H. Choi, R. Blunck, F. Bezanilla, J.R. Heath, J. Phys. Chem. B 108, 16040 (2004)CrossRefGoogle Scholar
  10. 10.
    S.H. White, Biophys. J. 12, 432 (1972)CrossRefADSGoogle Scholar
  11. 11.
    T.S.H. Snyder, K.G.E. Chiang, A.P. Tirio, J. Colloid Interface Sci. 67, 31 (1978)CrossRefGoogle Scholar
  12. 12.
    D.P. Tieleman, S.J. Marrink, H.J.C. Berendsen, BBA-Rev. Biomembranes 1331, 235 (1997)Google Scholar
  13. 13.
    E. Jakobsson, Trends Biochem. Sci. 22, 339 (1997)CrossRefGoogle Scholar
  14. 14.
    L. Forrest, M.S.P. Sansom, Curr. Opin. Struct. Biol. 25, 174 (2000)CrossRefGoogle Scholar
  15. 15.
    S.E. Feller, Curr. Opin. Colloid Interface Sci. 5, 217 (2000)CrossRefGoogle Scholar
  16. 16.
    G. Brannigan, L.C.L. Lin, F.L.H. Brown, Eur. Biophys. J. 35, 104 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Müller, K. Katsov, M. Schick, Phys. Rep. 434, 113 (2006)CrossRefADSGoogle Scholar
  18. 18.
    R. Lipowsky, U. Seifert, Mol. Cryst. Liq. Cryst. 202, 17 (1991)CrossRefGoogle Scholar
  19. 19.
    E. Evans, R. Skalak, Mechanisms and Thermodyanmics of Biomembranes, Vol. 64 (CRC, Boca Raton, FL, 1980)Google Scholar
  20. 20.
    F.L.H. Brown, Annu. Rev. Phys. Chem. 59, 685 (2008)CrossRefADSGoogle Scholar
  21. 21.
    W. Helfrich, Z. Naturforsch. 28, 693 (1973)MathSciNetGoogle Scholar
  22. 22.
    F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)CrossRefGoogle Scholar
  23. 23.
    I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London and New York, 2004).Google Scholar
  24. 24.
    H.W. Huang, Biophys. J. 50, 1061 (1986)CrossRefADSGoogle Scholar
  25. 25.
    W. Helfrich, E. Jakobsson, Biophys. J. 57, 1075 (1990)CrossRefGoogle Scholar
  26. 26.
    C. Nielsen, M. Goulian, O.S. Anderson, Biophys. J. 74, 1966 (1998)CrossRefADSGoogle Scholar
  27. 27.
    P. Biscari, F. Bisi, R. Rosso, J. Math. Biol. 45, 37 (2002)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus, S. Safran, Biophys. J. 71, 648 (1996)CrossRefADSGoogle Scholar
  29. 29.
    R. De Vita, I.W. Stewart, D.J. Leo, J. Phys. A: Math. Theor. 40, 13179 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    J.B. Fournier, Eur. Phys. J. B 11, 261 (1999)CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    M. Hamm, M.M. Kozlov, Eur. Phys. J. E 3, 323 (2000)CrossRefGoogle Scholar
  32. 32.
    S. May, Eur. Biophys. J. 29, 17 (2000)CrossRefGoogle Scholar
  33. 33.
    S. May, Y. Kozlovsky, A. Ben-Shaul, M.M. Kozlov, Eur. Phys. J. E 14, 299 (2004)CrossRefGoogle Scholar
  34. 34.
    E.R. May, A. Narang, D.I. Kopelevich, Phys. Rev. E 76, 21913 (2007)CrossRefADSGoogle Scholar
  35. 35.
    I.W. Stewart, Continuum Mech. Thermodyn. 18, 343 (2007)MATHCrossRefADSGoogle Scholar
  36. 36.
    R. Ribotta, G. Durand, J. Phys. (Paris) 38, 179 (1977)Google Scholar
  37. 37.
    W. E, Arch. Rational Mech. Anal. 137, 159 (1997)MATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    G.K. Auernhammer, H.R. Brand, H. Pleiner, Rheol. Acta 39, 215 (2000)CrossRefGoogle Scholar
  39. 39.
    G.K. Auernhammer, H.R. Brand, H. Pleiner, Phys. Rev. E 66, 061707 (2002)CrossRefADSGoogle Scholar
  40. 40.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, second edition (Oxford Science Publications, 1993)Google Scholar
  41. 41.
    T. Soddemann, G.K. Auernhammer, H. Guo, B. Dünweg, K. Kremer, Eur. Phys. J. E 13, 141 (2004)CrossRefGoogle Scholar
  42. 42.
    A.J. Walker, J. Phys. A: Math. Theor. 41, 385205 (2008)CrossRefADSGoogle Scholar
  43. 43.
    A. Rapini, M. Papoular, J. Phys. Colloq. 30(C4), 54 (1969)Google Scholar
  44. 44.
    O. Farago, P. Pincus, Eur. Phys. J. E 11, 399 (2003)CrossRefGoogle Scholar
  45. 45.
    F. Brochard, P.G. de Gennes, P. Pfeuty, J. Phys. (Paris) 37, 1099 (2006)Google Scholar
  46. 46.
    I.M. Gelfand, S.V. Fomin, Calculus of Variations (Dover, 2000)Google Scholar
  47. 47.
    S.J. Elston, Liq. Cryst. 16, 151 (1994)CrossRefGoogle Scholar
  48. 48.
    R. De Vita, I.W. Stewart, J. Phys.: Condens. Matter 20, 335101 (2009)CrossRefGoogle Scholar
  49. 49.
    I.W. Stewart, J. Phys. A: Math. Theor. 40, 5297 (2007)MATHCrossRefADSGoogle Scholar
  50. 50.
    C. Anderson, F.M. Leslie, Mol. Cryst. Liq. Cryst. 330, 609 (1999)CrossRefGoogle Scholar
  51. 51.
    F. Jähnig, Biophys. J. 71, 1348 (1996)CrossRefGoogle Scholar
  52. 52.
    N. Malmstadt, T.J. Jeon, J.J. Schmidt, Adv. Mater. 20, (2008)Google Scholar
  53. 53.
    S.B. Hladky, D.W.R. Gruen, Biophys. J. 38, 251 (1982)CrossRefADSGoogle Scholar
  54. 54.
    H. Yokoyama, H.A. Van Sprang, J. Appl. Phys. 57, 4520 (1985)CrossRefADSGoogle Scholar
  55. 55.
    R. Fettiplace, D.M. Andrews, D.A. Haydon, J. Membrane Biol. 5, 277 (1971)CrossRefGoogle Scholar
  56. 56.
    V.A. Parsegian, Van der Waals forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2006)Google Scholar
  57. 57.
    J.D. Requena, F. Billett, D.A. Haydon, Proc. R. Soc. London, Ser. A 347, 141 (1975)CrossRefADSGoogle Scholar
  58. 58.
    J. Requena, D.A. Haydon, Proc. R. Soc. London, Ser. A 347, 161 (1975)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Engineering Science and Mechanics DepartmentVirginia TechBlacksburgUSA
  2. 2.Department of Mathematics and StatisticsUniversity of StrathclydeGlasgowUK

Personalised recommendations