Skip to main content
Log in

Polymer-decorated tethered membranes under good- and poor-solvent conditions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study tethered membranes grafted by polymer chains on one side. Mean-field and scaling arguments predicting a spontaneous curvature are compared to the results of lattice-based Monte Carlo simulations using the Bond Fluctuation Model, which are carried out for various grafting densities and chain lengths. We show that already slightly overlapping chains bend the membrane significantly. This proves the entropic origin for the bending stiffness, which is of order kT . To understand the membrane curvature under conditions of very small bending stiffness we apply a geometrical model which takes into account the state of chains at the overlap threshold. Applying a thermal solvent model for the grafted chains, we demonstrate that the bending direction of the membrane can be triggered by variation of the solvent quality. This indicates that polymer-decorated membranes may serve as switchable nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Eck, A. Küller, M. Grunze, B. Völkel, A. Gölzhäuser, Adv. Mater. 17, 2583 (2005)

    Article  Google Scholar 

  2. Y. Kantor, M. Kardar, D.R. Nelson, Phys. Rev. Lett. 57, 791 (1986)

    Article  ADS  Google Scholar 

  3. Y. Kantor, K. Kremer, Phys. Rev. E 48, 2490 (1993)

    Article  ADS  Google Scholar 

  4. F.F. Abraham, D.R. Nelson, J. Phys. (Paris) 51, 2653 (1990)

    Google Scholar 

  5. J.A. Aronovitz, T.C. Lubensky, Phys. Rev. Lett. 60, 2634 (1988)

    Article  ADS  Google Scholar 

  6. M. Plischke, D. Boal, Phys. Rev. A 38, 4943 (1988)

    Article  ADS  Google Scholar 

  7. D. Boal, E. Levinson, D. Liu, M. Plischke, Phys. Rev. A 40, 3292 (1989)

    Article  ADS  Google Scholar 

  8. F.F. Abraham, W.E. Rudge, M. Plischke, Phys. Rev. Lett. 62, 1757 (1989)

    Article  ADS  Google Scholar 

  9. J.-S. Ho, A. Baumgärtner, Phys. Rev. Lett. 63, 1324 (1989)

    Article  ADS  Google Scholar 

  10. M. Werner, Diploma Thesis, Monte Carlo Simulation of the static and dynamic properties of polymer membranes (English translation) (2009)

  11. F. David, K.J. Wiese, Phys. Rev. Lett. 76, 4564 (1996)

    Article  ADS  Google Scholar 

  12. R. Cantor, Macromolecules 14, 1186 (1981)

    Article  ADS  Google Scholar 

  13. S.T. Milner, T.A. Witten, J. Phys. (Paris) 49, 1951 (1988)

    Google Scholar 

  14. P.-G. de Gennes, J. Phys. Chem. 94, 8407 (1990)

    Article  Google Scholar 

  15. J.T. Brooks, C.M. Marques, M.E. Cates, J. Phys. II 1, 673 (1991)

    Article  Google Scholar 

  16. R. Lipowsky, Europhys. Lett. 30, 197 (1995)

    Article  ADS  Google Scholar 

  17. C. Hiergeist, R. Lipowsky, J. Phys. II 6, 1465 (1996)

    Article  Google Scholar 

  18. R. Lipowsky, Colloids Surf. A 128, 255 (1997)

    Article  Google Scholar 

  19. R. Lipowsky, H.-G. Döbereiner, C. Hiergeist, V. Indrani, Physica A 249, 536 (1998)

    Article  Google Scholar 

  20. M. Breidenich, R.R. Netz, R. Lipowsky, Europhys. Lett. 49, 431 (2000)

    Article  ADS  Google Scholar 

  21. Y.W. Kim, W. Sung, Phys. Rev. E 63, 041910 (2001)

    Article  ADS  Google Scholar 

  22. R. Lipowsky, J. Bio. Phys. 28, 195 (2002)

    Article  Google Scholar 

  23. T. Auth, G. Gompper, Phys. Rev. E 68, 051801 (2003)

    Article  ADS  Google Scholar 

  24. M. Laradji, J. Chem. Phys. 121, 1591 (2004)

    Article  ADS  Google Scholar 

  25. T. Auth, G. Gompper, Phys. Rev. E 72, 031904 (2005)

    Article  ADS  Google Scholar 

  26. M. Birshtein, P.A. Iakovlev, V.M. Amoskov, F.A.M. Leermakers, E.B. Zhulina, O.V. Borisov, Macromolecules 41, 478 (2008)

    Article  ADS  Google Scholar 

  27. M. Daoud, J.P. Cotton, J. Phys. (Paris) 43, 531 (1982)

    Google Scholar 

  28. R. Joannic, L. Auvray, D.D. Lasic, Phys. Rev. Lett. 78, 3402 (1997)

    Article  ADS  Google Scholar 

  29. J.H. Fendler, P. Tundo, Acc. Chem. Res. 17, 3 (1984)

    Article  Google Scholar 

  30. A. Stamouli, E. Pelletier, V. Koutsos, E. van der Vegte, G. Hadziioannou, Langmuir 12, 3221 (1996)

    Article  Google Scholar 

  31. E. Evans, W. Rawicz, Phys. Rev. Lett. 79, 2379 (1997)

    Article  ADS  Google Scholar 

  32. H.-G. Döbereiner, W. Lehmann, A. Goedel, O. Selchow, R. Lipowsky, Mater. Sci. Cell 489, 101 (1998)

    Google Scholar 

  33. I. Tsafrir, D. Sagi, T. Arzi, M.-A. Guedeau-Boudeville, V. Frette, D. Kandel, J. Stavans, Phys. Rev. Lett. 86, 1138 (2001)

    Article  ADS  Google Scholar 

  34. V. Nikolov, R. Lipowsky, R. Dimova, Biophys. J. 92, 4356 (2007)

    Article  ADS  Google Scholar 

  35. M.J. Bowick, A. Travesset, Phys. Rep. 344, 255 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. I. Carmesin, K. Kremer, Macromolecules 21, 2819 (1988)

    Article  ADS  Google Scholar 

  37. L.D. Landau, E.M. Lifschitz, Elastizitätstheorie (Akademie Verlag GmbH, Berlin, 1991) (English translation: Theory of Elasticity)

  38. W. Helfrich, Z. Naturforsch. 28c, 693 (1973)

    Google Scholar 

  39. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1991)

  40. H.P. Deutsch, K. Binder, J. Chem. Phys. 94, 2294 (1991)

    Article  ADS  Google Scholar 

  41. H.L. Trautenberg, T. Hölzl, D. Göritz, Comput. Theor. Polym. Sci. 6, 135 (1996)

    Google Scholar 

  42. C. Hagn, M. Wittkop, S. Kreitmeier, H.L. Trautenberg, T. Hölzl, D. Göritz, Polymer Gels Networks 5, 327 (1997)

    Article  Google Scholar 

  43. J.-U. Sommer, M. Schulz, H.L. Trautenberg, J. Chem. Phys. 98, 7515 (1993)

    Article  ADS  Google Scholar 

  44. J.-U. Sommer, T.A. Vilgis, G. Heinrich, J. Chem. Phys. 100, 9181 (1994)

    Article  ADS  Google Scholar 

  45. S. Lay, J.-U. Sommer, A. Blumen, J. Chem. Phys. 113, 11355 (2000)

    Article  ADS  Google Scholar 

  46. R. Descas, J.-U. Sommer, A. Blumen, J. Chem. Phys. 125, 214702 (2006)

    Article  ADS  Google Scholar 

  47. J. Klos, J.-U. Sommer, Macromolecules 42, 4878 (2009)

    Article  Google Scholar 

  48. A. Hoffmann, J.-U. Sommer, A. Blumen, J. Chem. Phys. 106, 6709 (1997)

    Article  ADS  Google Scholar 

  49. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  50. D.R.M. Williams, J. Phys. II 3, 1313 (1993)

    Article  Google Scholar 

  51. S.K. Pattanayek, T.T. Pham, G.G. Pereira, J. Chem. Phys. 122, 214908 (2005)

    Article  ADS  Google Scholar 

  52. G.S. Grest, M. Murat, Macromolecules 26, 3108 (1993)

    Article  ADS  Google Scholar 

  53. T. Bickel, C.M. Marques, J. Nanosci. Nanotechnol. 6, 2386 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, M., Sommer, J.U. Polymer-decorated tethered membranes under good- and poor-solvent conditions. Eur. Phys. J. E 31, 383–392 (2010). https://doi.org/10.1140/epje/i2010-10576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10576-4

Keywords

Navigation