Skip to main content
Log in

Symmetry of electrostatic interaction between pyrophosphate DNA molecules

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study chiral electrostatic interaction between artificial ideal homopolymer DNA-like molecules in which a number of phosphate groups of the sugar-phosphate backbone are exchanged for the pyrophosphate ones. We employ a model in which the DNA is considered as a one-dimensional lattice of dipoles and charges corresponding to base pairs and (pyro)phosphate groups, respectively. The interaction between molecules of the DNA is described by a pair potential U of electrostatic forces between the two sets of dipoles and charges belonging to respective lattices describing the molecules. Minima of the potential U indicate orientational ordering of the molecules and thus liquid crystalline phases of the DNA. We use numerical methods for finding the set of minima in conjunction with symmetries verified by the potential U . The symmetries form a non-commutative group of 8th order, S . Using the group S we suggest a classification of liquid crystalline phases of the DNA, which allows several cholesteric phases, that is polymorphism. Pyrophosphate forms of the DNA could clarify the role played by charges in their liquid crystalline phases, and open experimental research, important for nano-technological and bio-medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Robinson, Tetrahedron 13, 219 (1961)

    Article  Google Scholar 

  2. F. Livolant, J. Phys. (Paris) 47, 1605 (1986)

    Google Scholar 

  3. F. Livolant, Biophys. J. 65, 56 (1993)

    Article  ADS  Google Scholar 

  4. A.A. Purmal, V.L. Druca, Z.A. Shabarova, Bio-Org. Chem. 10, 394 (1984) (in Russian)

    Google Scholar 

  5. S.A. Kuznetsova, C. Clusel, E. Ugarte, I. Elias, M. Vasseur, M. Blumenfeld, Z.A. Shabarova, Nucl. Acids Res. 24, 4783 (1996)

    Article  Google Scholar 

  6. G.Ya. Sheflyan, E.A. Kubareva, S.A. Kuznetsova, A.S. Karyagina, I.I. Nikol'skaya, E.S. Gromova, Z.A. Shabarova, FEBS Lett. 390, 307 (1996)

    Article  Google Scholar 

  7. A.A. Purmal, Z.A. Shabarova, R.I. Gumport, Nucl. Acids Res. 20, 3713 (1992)

    Article  Google Scholar 

  8. M.V. Rogacheva, A.V. Bochenkova, S.A. Kuznetsova, M.K. Saparbaev, A.V. Nemukhin, J. Phys. Chem. 111, 432 (2007)

    Google Scholar 

  9. L. Onsager, Ann. Acad. Sci. NY 51, 621 (1999)

    Google Scholar 

  10. A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997)

    Article  ADS  Google Scholar 

  11. A.A. Kornyshev, S. Leikin, Phys. Rev. Lett. 84, 2537 (2000)

    Article  ADS  Google Scholar 

  12. A.A. Kornyshev, D.J. Lee, S. Leikin, A. Wynveen, S.B. Zimmerman, Phys. Rev. Lett. 95, 148102 (2005)

    Article  ADS  Google Scholar 

  13. A.A. Kornyshev, S. Leikin, Proc. Natl. Acad. Sci. U.S.A. 95, 13579 (1998)

    Article  ADS  Google Scholar 

  14. Y.H. Kim, J. Phys. (Paris) 43, 559 (1982)

    Google Scholar 

  15. B. Samor, M. Osipov, I. Domini, A. Bartolini, Int. J. Macromol. 15, 353 (1993)

    Article  Google Scholar 

  16. V.L. Golo, E.I. Kats, I.P. Kikot', JETP Lett. 84, 275 (2006)

    Article  ADS  Google Scholar 

  17. A.G. Cherstvy, J. Chem. Phys. B 112, 12585 (2008)

    Article  Google Scholar 

  18. V.L. Golo, E.I. Kats, Yu.S. Volkov, JETP Lett. 86, 278 (2007)

    Article  ADS  Google Scholar 

  19. M.A. El Hassan, C.R. Calladine, J. Mol. Biol. 251, 648 (1995)

    Article  Google Scholar 

  20. A.A. Kornyshev, D.J. Lee, S. Leikin, A. Wynveen, Rev. Mod. Phys. 79, 943 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Zanchetta, M. Nakata, M. Buscagilia, N.A. Clark, T. Belini, J. Phys.: Condens. Matter 20, 494214 (2008)

    Article  Google Scholar 

  22. M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276 (2007)

    Article  ADS  Google Scholar 

  23. F. Livolant, F.A. Leforestier, Progr. Polym. Sci. 21, 1115 (1996)

    Article  Google Scholar 

  24. R. Podgornik, H.H. Strey, V.A. Parsegian, Curr. Opin. Colloid Interface Sci. 3, 534 (1998)

    Article  Google Scholar 

  25. T.M. Alam, G. Drobny, J. Chem. Phys. 92, 6840 (1990)

    Article  ADS  Google Scholar 

  26. C.B. Stanley, H. Hong, H.H. Strey, Biophys. J. 89, 2552 (2005)

    Article  Google Scholar 

  27. E. Allahyarov, H. Lowen, Phys. Rev. E 62, 5542 (2000)

    Article  ADS  Google Scholar 

  28. E. Allahyarov, H. Lowen, G. Gompper, Europhys. Lett. 68, 894 (2004)

    Article  ADS  Google Scholar 

  29. E. Allahyarov, G. Gompper, H. Lowen, Phys. Rev. E 69, 041904 (2004)

    Article  ADS  Google Scholar 

  30. E. Allahyarov, G. Gompper, H. Lowen, J. Phys.: Condens. Matter 17, S1827 (2005)

    Article  ADS  Google Scholar 

  31. O. Punkkinen, A. Naji, R. Podgornik, I. Vattulainen, P.L. Hansen, EPL 82, 48001 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Golo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golo, V.L., Kats, E.I., Kuznetsova, S.A. et al. Symmetry of electrostatic interaction between pyrophosphate DNA molecules. Eur. Phys. J. E 31, 59–67 (2010). https://doi.org/10.1140/epje/i2010-10549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10549-7

Keywords

Navigation