The European Physical Journal E

, Volume 31, Issue 1, pp 51–58 | Cite as

A convective instability mechanism for quasistatic crack branching in a hydrogel

  • T. Baumberger
  • O. RonsinEmail author
Regular Article


Experiments on quasistatic crack propagation in gelatin hydrogels reveal a new branching instability triggered by wetting the tip opening with a drop of aqueous solvent less viscous than the bulk one. We show that the emergence of unstable branches results from a balance between the rate of secondary crack growth and the rate of advection away from a non-linear elastic region of size G/E , where G is the fracture energy and E the small strain Young modulus. We build a minimal, predictive model that combines mechanical characteristics of this mesoscopic region and physical features of the process zone. It accounts for the details of the stability diagram and lends support to the idea that non-linear elasticity plays a critical role in crack front instabilities.


Fracture Energy Energy Release Rate Process Zone Linear Elastic Fracture Mechan Edge Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.L. Drury, D.J. Mooney, Biomaterials 24, 4437 (2003)CrossRefGoogle Scholar
  2. 2.
    A. Livne, G. Cohen, J. Fineberg, Phys. Rev. Lett. 94, 224301 (2005)CrossRefADSGoogle Scholar
  3. 3.
    M.E. Seitz, D. Martina, T. Baumberger, V.R. Krishnan, C.-Y. Hui, K.R. Shull, Soft Matter 5, 447 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Baumberger, C. Caroli, D. Martina, Nat. Mater. 5, 552 (2006)CrossRefADSGoogle Scholar
  5. 5.
    B. Lawn, Fracture of Brittle Solids, 2nd edition (Cambridge, University Press, 1993)Google Scholar
  6. 6.
    C.-Y. Hui, A. Jagota, S.J. Bennison, J.D. Londono, Proc. R. Soc. London, Ser. A 459, 1489 (2003)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    T. Baumberger, C. Caroli, D. Martina, O. Ronsin, Phys. Rev. Lett. 100, 178803 (2008)CrossRefADSGoogle Scholar
  8. 8.
    A. Livne, O. Ben-David, J. Fineberg, Phys. Rev. Lett. 98, 124301 (2007)CrossRefADSGoogle Scholar
  9. 9.
    R.D. Deegan, P.J. Petersan, M. Marder, H. Swinney, Phys. Rev. Lett. 88, 014304 (2002)CrossRefADSGoogle Scholar
  10. 10.
    J. Fineberg, M. Marder, Phys. Rep. 313, 1 (1999)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    A. Livne, E. Bouchbinder, J. Fineberg, Phys. Rev. Lett. 101, 264301 (2008)CrossRefADSGoogle Scholar
  12. 12.
    V.R. Krishnan, C.-Y. Hui, R. Long, Langmuir 24, 14245 (2008)CrossRefGoogle Scholar
  13. 13.
    A.N. Gent, Langmuir 12, 4492 (1996)CrossRefGoogle Scholar
  14. 14.
    T. Baumberger, C. Caroli, D. Martina, Eur. Phys. J. E 21, 81 (2006)CrossRefGoogle Scholar
  15. 15.
    K.B. Broberg, Cracks and Fracture (Academic Press, 1999)Google Scholar
  16. 16.
    L. Guo, R.H. Colby, C.P. Lusigan, A.M. Howe, Macromolecules 36, 10009 (2003)CrossRefADSGoogle Scholar
  17. 17.
    O. Ronsin, T. Baumberger, C. Caroli, Phys. Rev. Lett. 103, 138302 (2009)CrossRefADSGoogle Scholar
  18. 18.
    L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford University Press, London, 1949)Google Scholar
  19. 19.
    R.S. Rivlin, A.G. Thomas, J. Polym. Sci. 10, 291 (1953)CrossRefADSGoogle Scholar
  20. 20.
    See CrackBranching.htm for video moviesGoogle Scholar
  21. 21.
    K.E. Daniels, S. Mukhopadhyay, P.J. Houseworth, R.P. Behringer, Phys. Rev. Lett. 99, 124501 (2007)CrossRefADSGoogle Scholar
  22. 22.
    E. Bouchbinder, A. Livne, J. Fineberg, Phys. Rev. Lett. 101, 264302 (2008)CrossRefADSGoogle Scholar
  23. 23.
    M. Shibayama, M. Okamoto, J. Chem. Phys. 115, 4285 (2001)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.INSPUPMC Univ Paris 06, CNRS UMR 7588ParisFrance

Personalised recommendations