Skip to main content
Log in

High-resolution ellipsometric studies on fluid interfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this article, highly accurate experimental results reveal the interfacial profile between different macroscopic fluid phases. The deviation from a step profile, quantified by the ellipsometric quantity J1, shows a strong correlation with the cohesive energy quantified by the Gordon parameter G . Surprisingly, at high values of G , J 1( < 0) deviates significantly from any predictions. Findings for water and water-like interfaces can be interpreted in terms of the strength of hydrogen bonding at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Russell, J. Bae, Polymers, Liquids and Colloids in Electric Fields. Interfacial Instabilities, Orientation and Phase Transitions, edited by Y. Tsori, U. Steiner (World Scientific Publishing Co., 2009) pp. 113–148.

  2. K. Tauer, S. Kozempel, G. Rother, J. Colloid Interface Sci. 312, 432 (2007).

    Article  Google Scholar 

  3. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, Amsterdam, 1991).

    Google Scholar 

  4. R. Sigel, G. Strobl, J. Chem. Phys. 112, 1029 (2000).

    Article  ADS  Google Scholar 

  5. E.W. Lang, H.D. Lüdemann, Angew. Chem. Int. Ed. 21, 315 (1982).

    Article  Google Scholar 

  6. H. Lamb, Hydrodynamics (Dover, New York, 1945).

    Google Scholar 

  7. D. Beysens, M. Robert, J. Chem. Phys. 87, 3056 (1987).

    Article  ADS  Google Scholar 

  8. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

    Google Scholar 

  9. R.M.A. Azzam, N.M. Bazhara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1977).

    Google Scholar 

  10. J. Lekner, Theory of Reflection (Martinus Nijhoff Publishers, Dordrecht, 1987).

    Google Scholar 

  11. J. Meunier, J. Phys. (Paris) 48, 1819 (1987).

    Google Scholar 

  12. D. Beaglehole, J. Physiol. Suppl., Paris 44, C10 (1983).

    Google Scholar 

  13. D. Beaglehole, Phys. Rev. Lett. 58, 1434 (1987).

    Article  ADS  Google Scholar 

  14. T.R. Jensen, M.O. Jensen, N. Reitzel, K. Balashev, G.H. Peters, K. Kjaer, T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).

    Article  ADS  Google Scholar 

  15. M. Mezger, S. Schoder, H. Reichert, H. Schroder, J. Okasinski, V. Honkimaki, J. Ralston, J. Bilgram, R. Roth, H. Dosch, J. Chem. Phys. 128, 244705 (2008).

    Article  ADS  Google Scholar 

  16. K. Lum, D. Chandler, J.D. Weeks, J. Phys. Chem. B 103, 4570 (1999).

    Article  Google Scholar 

  17. N.T. Southall, K.A. Dill, J. Phys. Chem. B 104, 1326 (2000).

    Article  Google Scholar 

  18. Y.R. Shen, V. Ostroverkhov, Chem. Rev. 106, 1140 (2006).

    Article  Google Scholar 

  19. D. Beaglehole, P. Wilson, J. Phys. Chem. 97, 11053 (1993).

    Article  Google Scholar 

  20. W.F. Murphy, J. Phys. Chem. 67, 5877 (1977).

    Article  Google Scholar 

  21. Y.H. Zhang, S.E. Feller, B.R. Brooks, R.W. Pastor, J. Phys. Chem. 103, 10252 (1995).

    Article  Google Scholar 

  22. G.C. Lie, S. Grigoras, L.X. Dang, D.Y. Yang, A.D. McLean, J. Phys. Chem. 99, 3933 (1993).

    Article  Google Scholar 

  23. K.N. Kudin, R. Car, J. Am. Chem. Soc. 130, 3915 (2008).

    Article  Google Scholar 

  24. U. Raviv, P. Laurat, J. Klein, Nature 413, 51 (2001).

    Article  ADS  Google Scholar 

  25. T.M. Truskett, P.G. Debenedetti, S. Torquato, J. Chem. Phys. 114, 2401 (2001).

    Article  ADS  Google Scholar 

  26. D. Derks, D.G.A.L. Aarts, D. Bonn, H.N.W. Lekkerkerker, A. Imhof, Phys. Rev. Lett. 92, 038301 (2006).

    Article  ADS  Google Scholar 

  27. J.P.R. Day, C.D. Bain, Phys. Rev. E 76, 041601 (2007).

    Article  ADS  Google Scholar 

  28. S. Mora, J. Daillant, K. Mecke, D. Luzet, A. Braslau, M. Alba, B. Struth, Phys. Rev. Lett. 90, 216101 (2003).

    Article  ADS  Google Scholar 

  29. A. Stocco, T. Mokhtari, G. Haseloff, A. Erbe, R. Sigel, submitted to Phys. Rev. E.

  30. A. Erbe, K. Tauer, R. Sigel, Phys. Rev. E 73, 031406 (2006).

    Article  ADS  Google Scholar 

  31. A. Erbe, K. Tauer, R. Sigel, Langmuir 23, 452 (2007).

    Article  Google Scholar 

  32. A. Erbe, R. Sigel, Eur. Phys. J. E 22, 303 (2007).

    Article  Google Scholar 

  33. A. Erbe, K. Tauer, R. Sigel, Langmuir 25, 2703 (2009).

    Article  Google Scholar 

  34. A. Erbe, R. Sigel, Appl. Opt. 12, 2161 (2008).

    Google Scholar 

  35. We represented our data using the convention adopted by Lekner, i.e., r p = r s at normal incidence.

  36. T.E. Daubert, R.P. Danner, H.M. Sibul, C.C. Stebbins, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation (Taylor and Francis, Washington DC, 1998).

    Google Scholar 

  37. T.L. Greaves, A. Weerawardena, C. Fong, C.J. Drummond, J. Phys. Chem. B 111, 4082 (2007).

    Article  Google Scholar 

  38. F. Evans, H. Wennerstrom, The Colloidal Domain (Wiley, New York, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stocco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stocco, A., Tauer, K. High-resolution ellipsometric studies on fluid interfaces. Eur. Phys. J. E 30, 431 (2009). https://doi.org/10.1140/epje/i2009-10544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10544-1

Keywords

Navigation