Skip to main content
Log in

Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the numerical efficiency of solving the self-consistent field theory (SCFT) for periodic block-copolymer morphologies by combining the spectral method with Anderson mixing. Using AB diblock-copolymer melts as an example, we demonstrate that this approach can be orders of magnitude faster than competing methods, permitting precise calculations with relatively little computational cost. Moreover, our results raise significant doubts that the gyroid (G) phase extends to infinite \( \chi\) N . With the increased precision, we are also able to resolve subtle free-energy differences, allowing us to investigate the layer stacking in the perforated-lamellar (PL) phase and the lattice arrangement of the close-packed spherical ( S cp phase. Furthermore, our study sheds light on the existence of the newly discovered Fddd ( O70 morphology, showing that conformational asymmetry has a significant effect on its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006).

    Google Scholar 

  2. M.W. Matsen, in Soft Matter, Polymer Melts and Mixtures, edited by G. Gompper, M. Schick Vol. 1 (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  3. M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002).

    Article  ADS  Google Scholar 

  4. M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994).

    Article  ADS  Google Scholar 

  5. D.A. Hajduk et al., Macromolecules 30, 3788 (1997).

    Article  ADS  Google Scholar 

  6. C.A. Tyler, D.C. Morse, Phys. Rev. Lett. 94, 208302 (2005).

    Article  ADS  Google Scholar 

  7. M. Takenaka et al., Macromolecules 40, 4399 (2007); M.I. Kim et al., Macromolecules 41, 7667 (2008); 42, 5266 (2009).

    Article  ADS  Google Scholar 

  8. B. Miao, R.A. Wickham, J. Chem. Phys. 128, 054902 (2008).

    Article  ADS  Google Scholar 

  9. M. Laradji, A.-C. Shi, R.C. Desai, J. Noolandi, Phys. Rev. Lett. 78, 2577 (1997); H.P. Huinink, J.C.M. Brokken-Zijp, M.A. van Dijk, G.J.A. Sevink, J. Chem. Phys. 112, 2452 (1997); J.R. Roan, Phys. Rev. Lett. 86, 1027 (2001).

    Google Scholar 

  10. A. Ranjan, J. Qin, D.C. Morse, Macromolecules 41, 942 (2008); M. Heckmann, B. Drossel, Macromolecules 41, 7679 (2008); J.U. Kim, M.W. Matsen, Macromolecules 41, 4435 (2008).

    Article  ADS  Google Scholar 

  11. H.D. Ceniceros, G.H. Fredrickson, Multiscale Model. Simul. 2, 452 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  12. K.Ø. Rasmussen, G. Kalosakas, J. Poly. Sci., Part B 40,1777 (2002).

    Article  Google Scholar 

  13. E.W. Cochran, C.J. Garcia-Cervera, G.H. Fredrickson, Macromolecules 39, 2449 (2006); 39, 4264 (2006).

    Article  ADS  Google Scholar 

  14. M.W. Matsen, F.S. Bates, Macromolecules 29, 1091 (1996).

    Article  ADS  Google Scholar 

  15. R.B. Thompson, K.Ø. Rasmussen, T. Lookman, J. Chem. Phys. 120, 31 (2004).

    Article  ADS  Google Scholar 

  16. L. Zho et al., Phys. Rev. Lett. 86, 6030 (2001); Macromolecules 36, 3180 (2003).

    Article  ADS  Google Scholar 

  17. Y.-Y. Huang, J.-Y. Hsu, H.-L. Chen, T. Hashimoto, Macromolecules 40, 406 (2007).

    Article  ADS  Google Scholar 

  18. Z.J. Guo et al., Phys. Rev. Lett. 101, 028301 (2008).

    Article  ADS  Google Scholar 

  19. V. Eyert, J. Comput. Phys. 124, 271 (1996); F. Schmid, Phys. Rev. E 55, 5774 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. By using the chain rule and expressing the free energy as the functional, F[ϕ A, ω A, ϕ B, ω B, ξ], in ref. [4], the derivative, dF/dD, can be separated into a contribution, ∂F/∂D, due to the explicit dependence on D plus terms for the implicit dependence though each of the functions, ϕ A(r), ω A(r), ϕ B(r), ω B(r) and ξ(r). Since the functional is an extremum with respect to the five functions, only the explicit dependence in Q survives.

    Article  ADS  Google Scholar 

  21. C.A. Tyler, D.C. Morse, Macromolecules 36, 8184 (2003).

    Article  ADS  Google Scholar 

  22. A.N. Semenov, Sov. Phys. JETP 61, 733 (1985).

    Google Scholar 

  23. M.W. Matsen, Phys. Rev. Lett. 80, 201 (1998).

    Article  ADS  Google Scholar 

  24. A.N. Semenov, Macromolecules 22, 2849 (1989).

    Article  ADS  Google Scholar 

  25. M.W. Matsen, F.S. Bates, J. Polym. Sci., Part B 35, 945 (1997).

    Article  Google Scholar 

  26. E.W. Cochran, private communication.

  27. A.J. Meuler, M.A. Hillmyer, F.S. Bates, Macromolecules 42, 7221 (2009).

    Article  Google Scholar 

  28. A.E. Likhtman, A.N. Semenov, Macromolecules 30, 7273 (1997).

    Article  ADS  Google Scholar 

  29. N. Sakamoto et al., Macromolecules 30, 1621 (1997); Macromolecules 31, 8493 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  30. E.L. Thomas, D.J. Kinning, D.B. Alward, C.S. Henkee, Macromolecules 20, 2934 (1987).

    Article  ADS  Google Scholar 

  31. M.W. Matsen, F.S. Bates, J. Chem. Phys. 106, 2436 (1997).

    Article  ADS  Google Scholar 

  32. G.H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987).

    Article  ADS  Google Scholar 

  33. F.S. Bates, M.F. Schulz, A.K. Khandpur, S. Förster, J.H. Rosedale, K. Almdal, K. Mortensen, Faraday Discuss. 98,7 (1994).

    Article  Google Scholar 

  34. P. Grzywacz, J. Qin, D.C. Morse, Phys. Rev. E 76, 061802 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsen, M.W. Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing. Eur. Phys. J. E 30, 361 (2009). https://doi.org/10.1140/epje/i2009-10534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10534-3

Keywords

Navigation