Skip to main content
Log in

On a moving liquid film and its instability on textured surfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Recently, two regimes of viscous friction on textured surfaces were proposed in the context of penetration of liquid film into the texture (EPL 79, 56005 (2007)): the Poiseuille and Stokes regimes. With this idea on viscous friction, we theoretically discuss instabilities on a liquid film on textured surfaces when the film is forced to move with external forces. When a film recedes due to a pressure drop, we find scaling laws for instabilities to be checked in future experiments. When a circular film expands due to centrifugal force we find that the expanding film is stable against rim fluctuations (within the linear stability analysis) with its radius determined by a simple equation. Our discussion sheds light on the curvature of the front of the moving liquid film on textured surfaces and how the film thickness is kept fixed to the texture height on textured surfaces, aspects which have not been discussed in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. De Gennes, F. Brochard-Wyart, D. Quéré, Gouttes, Bulles, Perles et Ondes (Belin, Paris, 2002).

  2. J. Bico, C. Tordeux, D. Quéré, Europhys. Lett. 55, 214 (2001).

    Article  ADS  Google Scholar 

  3. M. Callies, D. Quéré, Soft Matter 1, 55 (2005).

    Article  Google Scholar 

  4. A. Otten, S. Herminghaus, Langmuir 20, 2405 (2004).

    Article  Google Scholar 

  5. R. Narhe, D. Beysens, Phys. Rev. Lett. 93, 076103 (2004).

    Article  ADS  Google Scholar 

  6. M. Tasinkevych, S. Dietrich, Phys. Rev. Lett. 97, 106102 (2006).

    Article  ADS  Google Scholar 

  7. L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, H.A. Stone, Nat. Mater. 6, 661 (2007).

    Article  ADS  Google Scholar 

  8. N.A. Patanker, Langmuir 19, 1249 (2003).

    Article  Google Scholar 

  9. A. Marmur, Langmuir 19, 8343 (2003).

    Article  Google Scholar 

  10. C. Ishino, K. Okumura, D. Quéré, Europhys. Lett. 68, 419 (2004).

    Article  ADS  Google Scholar 

  11. C. Ishino, K. Okumura, Europhys. Lett. 76, 464 (2006).

    Article  ADS  Google Scholar 

  12. C. Ishino, K. Okumura, Eur. Phys. J. E 25, 415 (2008).

    Article  Google Scholar 

  13. A. Dupuis, J.M. Yeomans, Langmuir 21, 2624 (2005).

    Article  Google Scholar 

  14. H. Kusumaatmajya, J.M. Yeomans, Langmuir 23, 6019 (2007).

    Article  Google Scholar 

  15. S. Moulinet, D. Bartolo, Eur. Phys. J. E 24, 251 (2007).

    Article  Google Scholar 

  16. M. Reyssat, J.M. Yeomans, D. Quéré, EPL 81, 26006 (2008).

    Article  ADS  Google Scholar 

  17. C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, D. Quéré, EPL 79, 56005 (2007).

    Article  Google Scholar 

  18. P.G. Saffman, G. Taylor, Proc. R. Soc. London, Ser. A 245, 312 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. E. Guyon, J.-P. Hulin, Hydrodynamique Physique (Paris, CNRS Éditions, 2001).

    Google Scholar 

  20. H. Hasimoto, J. Fluid Mech. 5, 317 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. F. Melo, J.F. Joanny, S. Fauve, Phys. Rev. Lett. 63, 1958 (1989).

    Article  ADS  Google Scholar 

  22. L. Paterson, J. Fluid Mech. 113, 513 (1981).

    Article  ADS  Google Scholar 

  23. L. Carrillo et al., Phys. Rev. E 54, 6260 (1996).

    Article  ADS  Google Scholar 

  24. In the present case the determination of C rz is delicate from a geometrical point of view but we can determine C rz in this way, while in [25] and [23] the authors assumed essentially C rz = 0 in order to derive a solution to a non-fluctuating straight advancing front line and in [18] and [22] the authors assumed that 1/C rz is determined by the cell thickness from a geometrical viewpoint.

  25. H.E. Huppert, Nature 300, 427 (1982).

    Article  ADS  Google Scholar 

  26. In the usual case of spin coating where the film becomes thinner as it expands, the z-independent pressure p inside the liquid in eq. (21) can be set as the sum of the atmospheric pressure and the Laplace pressure jump due to the curvature of the film surface: p(r, ϑ) = p 0 +γ∇2 h(r, ϑ) in the region with weak curvatures [21]. However, in the present case, as in the cases of the spinning Hele-Shaw cell [22, 23], we cannot use this setting of pressure because the film thickness is assumed to be a constant (i.e., h is equal to the pillar height) on a sub-macroscopic scale: in the case of Hele-Shaw cell and in the present case the plate and pillars can tune pressure on the liquid as discussed in sect. 2, respectively.

  27. If we could increase Δ, the spin coating could be performed up to a larger R without causing instability, which would be useful in industry. Unfortunately, the maximum of Δ is zero, as mentioned above.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Okumura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamamoto-Kurosaki, M., Okumura, K. On a moving liquid film and its instability on textured surfaces. Eur. Phys. J. E 30, 283 (2009). https://doi.org/10.1140/epje/i2009-10526-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10526-3

PACS

Navigation