Skip to main content
Log in

Collapsing granular suspensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for both the unperturbed and the perturbed phases of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Mitchell, K. Soga, Fundamentals of Soil Behavior, 3rd edition (Wiley, Hoboken, New Jersey, 2005).

    Google Scholar 

  2. Y.M. Reznik, Eng. Geol. 78, 95 (2005).

    Article  Google Scholar 

  3. T. Ayadat, A. Hanna, Geotech. Test. J. 30, 312 (2007).

    Google Scholar 

  4. S. Manley et al., Phys. Rev. Lett. 94, 218302 (2005).

    Article  ADS  Google Scholar 

  5. J. Heierli, J. Geophys. Res. (Earth Surf.) 110, F02008 (2005).

    Article  Google Scholar 

  6. M. Jean, J.J. Moreau, Contact Mechanics International Symposium (Presses Polytechniques et Universitaires Romandes, Lausanne, 1992), pp. 31–48; J.J. Moreau, Eur. J. Mech. A-Solid 13, 93 (1994).

    Google Scholar 

  7. T. Unger, J. Kertesz, Modelling of Complex Systems, Seventh Granada Lectures 2003 (Melville, New York, AIP, 2003), pp. 116–138, cond-mat/0211696.

    Google Scholar 

  8. L. Brendel et al., The Physics of Granular Media (Wiley-VCH, Berlin, 2004), pp. 325–340.

    Book  Google Scholar 

  9. D. Kadau et al., Phase Trans. 76, 315 (2003).

    Article  Google Scholar 

  10. A. Taboada et al., Phys. Rev. Lett. 97, 098302 (2006).

    Article  ADS  Google Scholar 

  11. Y. Noh, Fluid Dyn. Res. 27, 129 (2000).

    Article  ADS  Google Scholar 

  12. D. Lohse et al., Nature 432, 689 (2004).

    Article  ADS  Google Scholar 

  13. J.R. Royer et al., Nature Phys. 1, 164 (2005).

    Article  ADS  Google Scholar 

  14. G. Caballero et al., Phys. Rev. Lett. 99, 018001 (2007).

    Article  ADS  Google Scholar 

  15. G. Bartels et al., Granular Matter 7, 139 (2005).

    Article  MATH  Google Scholar 

  16. D. Kadau et al., Granular Matter 11, 67 (2009).

    Article  Google Scholar 

  17. A. Danin, Flora 167, 409 (1978); J. Arid Environ. 21, 193 (1991).

    Google Scholar 

  18. W.R. Parker, Nature 210, 1247 (1966).

    Article  ADS  Google Scholar 

  19. A. Khaldoun et al., Nature 437, 635 (2005).

    Article  ADS  Google Scholar 

  20. C.R.I. Clayton et al., Site Investigation (Blackwell Science, Oxford, 1995).

    Google Scholar 

  21. R. Albert et al., Phys. Rev. Lett. 82, 205 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kadau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadau, D., Andrade Jr., J.S. & Herrmann, H.J. Collapsing granular suspensions. Eur. Phys. J. E 30, 275 (2009). https://doi.org/10.1140/epje/i2009-10523-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10523-6

PACS

Navigation