Skip to main content
Log in

Partial clustering prevents global crystallization in a binary 2D colloidal glass former

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A mixture of two types of super-paramagnetic colloidal particles with long-range dipolar interaction is confined by gravity to the flat interface of a hanging water droplet. The particles are observed by video microscopy and the dipolar interaction strength is controlled via an external magnetic field. The system is a model system to study the glass transition in 2D, and it exhibits partial clustering of the small particles (N. Hoffmann et al., Phys. Rev. Lett. 97, 078301 (2006)). This clustering is strongly dependent on the relative concentration \( \xi\) of big and small particles. However, changing the interaction strength \( \Gamma\) reveals that the clustering does not depend on the interaction strength. The partial clustering scenario is quantified using Minkowski functionals and partial structure factors. Evidence that partial clustering prevents global crystallization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Google Scholar 

  2. K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000).

    Google Scholar 

  3. P. Keim, G. Maret, H.H. von Grünberg, Phys. Rev. E 75, 031402 (2007).

    Google Scholar 

  4. L. Onsager, Phys. Rev. 65, 117 (1944).

    Google Scholar 

  5. H. König, R. Hund, K. Zahn, G. Maret, Eur. Phys. J. E 18, 287 (2005).

    Google Scholar 

  6. D. Perera, P. Harrowell, Phys. Rev. E 59, 5721 (1999).

    Google Scholar 

  7. M. Bayer, J. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J. Wittmer, Phys. Rev. E 76, 011508 (2007).

    Google Scholar 

  8. F. Ebert, P. Keim, G. Maret, Eur. Phys. J. E 26, 161 (2008).

    Google Scholar 

  9. J.H. Conway, S. Torquato, Proc. Natl. Acad. Sci. U.S.A. 103, 10612 (2006).

    Google Scholar 

  10. H.J. Schöpe, G. Bryant, W. van Megen, Phys. Rev. Lett. 96, 175701 (2006).

    Google Scholar 

  11. M.D. Rintoul S. Torquato, Phys. Rev. Lett. 77, 4198 (1996).

    Google Scholar 

  12. S.R. Williams, I.K. Snook, W. van Megen, Phys. Rev. E 64, 021506 (2001).

    Google Scholar 

  13. P.N. Pusey, J. Phys.: Condens. Matter 20, 494202 (2008).

    Google Scholar 

  14. T. Mizuguchi, T. Odagaki, M. Umezaki, T. Koumyou, J. Matsui, in Complex Systems, edited by M. Tokuyama, I. Oppenheim, H. Nishiyama, AIP Conf. Proc., Vol. 982 (2008) p. 234.

  15. H. Shintani, H. Tanaka, Nature Physics 2, 200 (2006).

  16. T. Kawasaki, T. Araki, H. Tanaka, Phys. Rev. Lett. 99, 215701 (2007).

    Google Scholar 

  17. M. Leunissen, C. Christova, A. Hynninen, C. Royall, A. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437, 235 (2005).

  18. L. Assoud, R. Messina, H. Löwen, EPL 80, 48001 (2007).

  19. J. Fornleitner, F. Lo Verso, G. Kahl, C.N. Likos, Soft Matter 4, 480 (2008).

    Google Scholar 

  20. N. Hoffmann, F. Ebert, C. Likos, H. Löwen, G. Maret, Phys. Rev. Lett. 97, 078301 (2006).

    Google Scholar 

  21. N. Hoffmann, C. Likos, H. Löwen, J. Phys.: Condens. Matter 18, 10193 (2006).

    Google Scholar 

  22. F. Ebert, P. Dillmann, G. Maret, P. Keim, arXiv:0903.2808 (2009).

  23. A. Buhot, W. Krauth, Phys. Rev. E 59, 2939 (1999).

    Google Scholar 

  24. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer-Verlag, Berlin, 1957).

  25. C. Beisbart, R. Valdarnini, T. Buchert, Astron. Astrophys. 379, 412 (2001).

    Google Scholar 

  26. C.N. Likos, K.R. Mecke, H. Wagner, J. Chem. Phys. 102, 9350 (1995).

    Google Scholar 

  27. J. Berryman, Phys. Rev. A 27, 1053 (1983).

    Google Scholar 

  28. T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Phys. Rev. Lett. 98, 058001 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Keim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, F., Maret, G. & Keim, P. Partial clustering prevents global crystallization in a binary 2D colloidal glass former. Eur. Phys. J. E 29, 311–318 (2009). https://doi.org/10.1140/epje/i2009-10490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10490-x

PACS

Navigation