Skip to main content
Log in

Segregation by thermal diffusion in moderately dense granular mixtures

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A theory based on a solution of the inelastic Enskog equation that goes beyond the weak dissipation limit is used to determine the thermal diffusion factor of a binary granular mixture under gravity. The Enskog equation that aims to describe moderate densities neglects velocity correlations but retains spatial correlations arising from volume exclusion effects. As expected, the thermal diffusion factor provides a segregation criterion that shows the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters of the system (masses, sizes, composition, density and coefficients of restitution). The form of the phase diagrams for the BNE/RBNE transition is illustrated in detail in the tracer limit case, showing that the phase diagrams depend sensitively on the value of gravity relative to the thermal gradient. Two specific situations are considered: i) absence of gravity, and ii) homogeneous temperature. In the latter case, after some approximations, our results are consistent with previous theoretical results derived from the Enskog equation. Our results also indicate that the influence of dissipation on thermal diffusion is more important in the absence of gravity than in the opposite limit. The present analysis, which is based on a preliminary short report of the author (Phys. Rev. E 78, 020301(R) (2008)), extends previous theoretical results derived in the dilute limit case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987).

    Google Scholar 

  2. J.B. Knight, H.M. Jaeger, S.R. Nagel, Phys. Rev. Lett. 70, 3728 (1993).

    Google Scholar 

  3. J. Duran, J. Rajchenbach, E. Clément, Phys. Rev. Lett. 70, 2431 (1993).

    Google Scholar 

  4. W. Cooken, S. Warr, J.M. Huntley, R.C. Ball, Phys. Rev. E 53, 2812 (1996).

    Google Scholar 

  5. T. Shinbrot, F.J. Muzzio, Phys. Rev. Lett. 81, 4365 (1998).

    Google Scholar 

  6. D.C. Hong, P.V. Quinn, S. Luding, Phys. Rev. Lett. 86, 3423 (2001).

    Google Scholar 

  7. S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Phys. Rev. E 50, R1762 (1994).

  8. M.E. Möbius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger, Nature 414, 270 (2001).

  9. D. Serero, I. Goldhirsch, S.H. Noskowicz, M.-L. Tan, J. Fluid Mech. 554, 237 (2006).

    Google Scholar 

  10. J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. Lett. 95, 098001 (2005)

    Google Scholar 

  11. V. Garzó, Europhys. Lett. 75, 521 (2006).

    Google Scholar 

  12. J.T. Jenkins, D. Yoon, Phys. Rev. Lett. 88, 194301 (2002).

    Google Scholar 

  13. B. Arnarson, J.T. Willits, Phys. Fluids 10, 1324 (1998).

    Google Scholar 

  14. B. Arnarson, J.T. Jenkins, Phys. Fluids 16, 4543 (2004).

    Google Scholar 

  15. L. Trujillo, M. Alam, H.J. Herrmann, Europhys. Lett. 64, 190 (2003)

    Google Scholar 

  16. J. Jenkins, F. Mancini, J. Appl. Mech. 54, 27 (1987).

    Google Scholar 

  17. A. Barrat, E. Trizac, Granular Matter 4, 57 (2002).

  18. S.R. Dahl, C.M. Hrenya, V. Garzó, J.W. Dufty, Phys. Rev. E 66, 041301 (2002).

    Google Scholar 

  19. V. Garzó, J.W. Dufty, C.M. Hrenya, Phys. Rev. E 76, 031303 (2007).

    Google Scholar 

  20. V. Garzó, C.M. Hrenya, J.W. Dufty, Phys. Rev. E 76, 031304 (2007).

    Google Scholar 

  21. M. Schröter, S. Ulrich, J. Kreft, S.B. Swift, H.L. Swinney, Phys. Rev. E 74, 011307 (2006).

    Google Scholar 

  22. J.E. Galvin, S.R. Dahl, C.M. Hrenya, J. Fluid Mech. 528, 207 (2005).

    Google Scholar 

  23. A.P.J. Breu, H.M. Ensner, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 90, 014302 (2003).

    Google Scholar 

  24. V. Garzó, Phys. Rev. E 78, 020301(R) (2008).

  25. A. Prevost, D.A. Egolf, J.S. Urbach, Phys. Rev. Lett. 89, 084301 (2002).

    Google Scholar 

  26. See, for instance, A. Puglisi, V. Loreto, U.M.B. Marconi, A. Petri, A. Vulpiani, Phys. Rev. Lett. 81, 3848 (1998)

  27. J.M. Kincaid, E.G.D. Cohen, M. López de Haro, J. Chem. Phys. 86, 963 (1987).

  28. S. Chapman, T.G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1970).

  29. See, for instance, J. Lutsko, Phys. Rev. E 63, 061211 (2001)

  30. D.R.M. Williams, F.C. McKintosh, Phys. Rev. E 54, R9 (1996).

  31. C. Henrique, G. Batrouni, D. Bideau, Phys. Rev. E 63, 011304 (2000).

    Google Scholar 

  32. V. Garzó, A. Santos, Kinetic Theory of Gases in Shear Flows. Nonlinear Transport (Kluwer, Dordrecht, 2003).

  33. See, for instance, J.M. Montanero, V. Garzó, Granular Matter 4, 17 (2002)

  34. R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002)

    Google Scholar 

  35. V. Garzó, J.W. Dufty, Phys. Rev. E 60, 5706 (1999).

    Google Scholar 

  36. A. Santos, J.W. Dufty, Phys. Rev. Lett. 86, 4823 (2001)

    Google Scholar 

  37. T. Boublik, J. Chem. Phys. 53, 471 (1970)

    Google Scholar 

  38. H.-Q. Wang, N. Menon, Phys. Rev. Lett. 100, 158001 (2008).

    Google Scholar 

  39. V. Garzó, J.W. Dufty, Phys. Rev. E 59, 5895 (1999).

    Google Scholar 

  40. J. Lutsko, Phys. Rev. E 72, 021306 (2005).

    Google Scholar 

  41. V. Garzó, F. Vega Reyes, Phys. Rev. E 79, 041303 (2009).

    Google Scholar 

  42. T.M. Reed, K.E. Gubbins, Applied Statistical Mechanics (McGraw-Hill, New York, 1973) Chapter 6.

  43. A. Santos, private communication.

  44. T. Schautz, R. Brito, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005).

    Google Scholar 

  45. R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. E 63, 061311 (2001).

    Google Scholar 

  46. D.K. Yoon, J.T. Jenkins, Phys. Fluids 18, 073303 (2006).

    Google Scholar 

  47. Note that the form of the effective collision frequency $\nu_0$ chosen here differs slightly from the one considered in ref. G08.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Garzó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzó, V. Segregation by thermal diffusion in moderately dense granular mixtures. Eur. Phys. J. E 29, 261–274 (2009). https://doi.org/10.1140/epje/i2009-10488-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10488-4

PACS

Navigation