Skip to main content
Log in

Physical model for the width distribution of axons

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The distribution of widths of axons was recently investigated, and was found to have a distinct peak at an optimized value. The optimized axon width at the peak may arise from the conflicting demands of minimizing energy consumption and assuring signal transmission reliability. The distribution around this optimized value is found to have a distinct non-Gaussian shape, with an exponential “tail”. We propose here a mechanical model whereby this distribution arises from the interplay between the elastic energy of the membrane surrounding the axon core, the osmotic pressure induced by the neurofilaments inside the axon bulk, and active processes that remodel the microtubules and neurofilaments inside the axon. The axon’s radius of curvature can be determined by the cell’s control of the osmotic pressure difference across the membrane, the membrane tension or by changing the composition of the different components of the membrane. We find that the osmotic pressure, determined by the neurofilaments, seems to be the dominant control parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Faisal, J.A. White, S.B. Laughlin, Curr. Biol. 15, 1143 (2005).

    Google Scholar 

  2. A.A. Faisal, S.B. Laughlin, PLoS Comput. Biol. 3, e79 (2007).

  3. R.A. Nixon, P.A. Paskevich, R.K. Sihag, C.Y. Thayer, J. Cell Biol. 126, 1031 (1994).

    Google Scholar 

  4. K. Tomita, T. Kubo, K. Matsuda, T. Madura, K. Yano, T. Fujiwara, H. Tanaka, M. Tohyama, K. Hosokawa, Brain Res. 1081, 44 (2006).

    Google Scholar 

  5. P.W. Baas, C.V. Nadar, K.A. Myers, Traffic 7, 490 (2006).

  6. S. Chang, T.M. Svitkina, G.G. Borisy, S.V. Popov, Nat. Cell Biol. 1, 399 (1999).

    Google Scholar 

  7. Y. Ma, D. Shakiryanova, I. Vardya, S.V. Popov, Curr. Biol. 14, 725 (2004).

    Google Scholar 

  8. R. Martin, R. Door, A. Ziegler, W. Warchol, J. Hahn, D. Breitig, Neuroscience 88, 327 (1999).

  9. X. Yin, T.O. Crawford, J.W. Griffin, P.h. Tu, V.M.Y. Lee, C. Li, J. Roder, B.D. Trapp, J. Neurosci. 18, 1953 (1998).

  10. S.M. de Waegh, V.M.Y. Lee, S.T. Brady, Cell 68, 451 (1992).

  11. R. Mukhopadhyay, S. Kumar, J.H. Hoh, Bioessays 26, 1017 (2004).

    Google Scholar 

  12. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, 1st edition (Westview Press, New York, 2003).

  13. J.B. Fournier, Soft Matter 3, 883 (2007).

  14. R.D. Leapman, P.E. Gallant, T.S. Reese, S.B. Andrews, Proc. Natl. Acad. Sci. U.S.A. 94, 7820 (1997).

    Google Scholar 

  15. S. Kumar, X. Yin, B.D. Trapp, M.E. Paulaitis, J.H. Hoh, J. Neurosci. Res. 68, 681 (2002).

    Google Scholar 

  16. S. Kumar, X. Yin, B.D. Trapp, J.H. Hoh, M.E. Paulaitis, Biophys. J. 82, 2360 (2002).

    Google Scholar 

  17. J.S. Cole, A. Messing, J.Q. Trojanowski, V.M.Y. Lee, J. Neurosci. 74, 6956 (1994).

    Google Scholar 

  18. B.T. Jacques-Fricke, Y. Seow, P.A. Gottlieb, F. Sachs, T.M. Gomez, J. Neurosci. 26, 5656 (2006).

    Google Scholar 

  19. B.S. Li, G.J. Veeranna, P. Grant, H.C. Pant, Brain Res. Mol. Brain Res. 70, 84 (1999).

    Google Scholar 

  20. R. Bar-Ziv, T. Tlusty, E. Moses, S.A. Safran, A. Bershadsky, Proc. Natl. Acad. Sci. U.S.A. 96, 10140 (1999).

    Google Scholar 

  21. S. Ochs, R. Pourmand, R.A.J. Jr, R.N. Friedman, Progr. Neurobiol. 52, 391 (1997).

    Google Scholar 

  22. P.A. Pullarkat, P. Dommersnes, P. Fernández, J.F. Joanny, A. Ott, Phys. Rev. Lett. 96, 048104 (2006).

    Google Scholar 

  23. J. Dai, M.P. Sheet, Cell 83, 693 (1995).

  24. N. Gov, A. Zilman, S. Safran, Phys. Rev. Lett. 90, 228101 (2003).

    Google Scholar 

  25. J. Li, G. Lykotrafitis, M. Dao, S. Suresh, Proc. Natl. Acad. Sci. U.S.A. 104, 4937 (2007).

    Google Scholar 

  26. J. Zimmerberg, M.M. Kozlov, Nature Rev. Mol. Cell Biol. 7, 9 (2006).

    Google Scholar 

  27. J. Hu, Y. Shibata, C. Voss, T. Shemesh, Z. Li, M. Coughlin, M.M. Kozlov, T.A. Rapoport, W.A. Prinz, Science 319, 1247 (2008).

  28. T. Itoh, P.D. Camilli, Biochim. Biophys. Acta 1761, 897 (2006).

    Google Scholar 

  29. E.M. Kovacs, R.S. Makar, F.B. Gertler, J. Cell Sci. 119, 2715 (2006).

    Google Scholar 

  30. P.K. Mattila, A. Pykalainen, J. Saarikangas, V.O. Paavilainen, H. Vihinen, E. Jokitalo, P. Lappalainen, J. Cell Biol. 176, 953 (2006).

    Google Scholar 

  31. C.A.J. Horvath, D.V. Broeck, G.A.V. Boulet, J. Bogers, M.J.S.D. Wolf, Int. J. Biochem. Cell Biol. 39, 1765 (2007).

    Google Scholar 

  32. V. Legendre-Guillemin, S. Wasiak, N.K. Hussain, A. Angers, P.S. McPherson, J. Cell Sci. 117, 9 (2004).

    Google Scholar 

  33. S.J. Royle, Cell. Mol. Life Sci. 63, 1823 (2006).

    Google Scholar 

  34. R.O. Calderón, G.H. DeVries, J. Neurosci. Res. 49, 372 (1997).

    Google Scholar 

  35. Y. Matsuoka, X. Li, V. Bennett, Cell. Mol. Life Sci. 57, 884 (2000).

    Google Scholar 

  36. R.M. Epand, Y. Shai, J.P. Segrest, G.M. Anantharamaiah, Biopolymers 37, 319 (1995).

  37. B. Sorre, A. Callan-Jones, J.B. Manneville, P. Nassoy, J.F. Joanny, J. Prost, B. Goud, P. Bassereau, Proc. Natl. Acad. Sci. U.S.A. 106, 5622 (2009).

    Google Scholar 

  38. D. Sornette, R. Cont, J. Phys. I 7, 431 (1997).

    Google Scholar 

  39. R.M. Hochmuth, J.Y. Shao, J. Dai, M.P. Sheetz, Biophys. J. 70, 358 (1996).

    Google Scholar 

  40. R. Bernal, P.A. Pullarkat, F. Melo, Phys. Rev. Lett. 99, 018301 (2007).

    Google Scholar 

  41. M. O’Toole, P. Lamoureux, K.E. Miller, Biophys. J. 94, 2610 (2008).

    Google Scholar 

  42. S.S. Reinsch, T.J. Mitchison, M. Kirschner, J. Cell Biol. 115, 365 (1991).

    Google Scholar 

  43. S. Tuvia, S. Levin, A. Bitler, R. Korenstein, J. Cell Biol. 141, 1551 (1998).

    Google Scholar 

  44. N. Gov, S. Safran, Biophys. J. 88, 1859 (2005).

    Google Scholar 

  45. J.B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001).

    Google Scholar 

  46. P. Girard, J. Prost, P. Bassereau, Phys. Rev. Lett. 94, 088102 (2005).

    Google Scholar 

  47. N. Gov, Phys. Rev. Lett. 93, 268104 (2004).

    Google Scholar 

  48. N.S. Gov, Phys. Rev. Lett. 97, 018101 (2006).

    Google Scholar 

  49. C. Wilhelm, Phys. Rev. Lett. 101, 028101 (2008).

    Google Scholar 

  50. J.T. Yabe, T. Chylinski, F.S. Wang, A. Pimenta, S.D. Kattar, M.D. Linsley, W.K.H. Chan, T.B. Shea, J. Neurosci. 21, 2195 (2001).

    Google Scholar 

  51. J.V. Shah, L.A. Flanagan, P.A. Janmey, J.F. Leterrier, Mol. Biol. Cell 11, 3495 (2000).

    Google Scholar 

  52. E.W. Dent, F.B. Gertler, Neuron 40, 209 (2003).

  53. T. Auth, S.A. Safran, N.S. Gov, Phys. Rev. E 76, 051910 (2007).

    Google Scholar 

  54. N.S. Gov, Biophys. J. 91, 2844 (2006).

  55. L. Haviv, N.S. Gov, Y. Ideses, A. Bernheim, Eur. Biophys. J. 37, 447 (2008).

    Google Scholar 

  56. H.H. Ong, A.C. Wright, S.L. Wehrli, A. Souza, E.D. Schwartz, S.N. Hwang, F.W. Wehrli, NeuroImage 40, 1619 (2008).

  57. R. Shlomovitz, N.S. Gov, Biophys. J. 94, 1155 (2008).

    Google Scholar 

  58. S.A. Safran, Statistical Thermodaynamics of Surfaces, Interfaces, and Membranes, 1st edition (Westview Press, Boulder, Colorado, 2003).

  59. J.B. Fournier, P. Galatola, Phys. Rev. Lett. 98, 018103 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gov, N.S. Physical model for the width distribution of axons. Eur. Phys. J. E 29, 337–344 (2009). https://doi.org/10.1140/epje/i2009-10476-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10476-8

PACS

Navigation