Skip to main content
Log in

Kinetic arrest in polyion-induced inhomogeneously charged colloidal particle aggregation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Polymer chains adsorbed onto oppositely charged colloidal particles can significantly modify the particle-particle interactions. For sufficient amounts of added polymers, the original electrostatic repulsion can even turn into an effective attraction and relatively large aggregates can form. The attractive interaction contribution between two particles arises from the correlated adsorption of polyions at the oppositely charged particle surfaces, resulting in a non-homogeneous surface charge distribution. Here, we investigate the aggregation kinetics of polyion-induced colloidal complexes through Monte Carlo simulation, in which the effect of charge anisotropy is taken into account by a DLVO-like inter-particle potential, as recentely proposed by Velegol and Thwar (Langmuir 17, 7687 (2001)). The results reveal that the aggregation process slows down due to the progressive increase of the potential barrier height upon clustering. Within this framework, the experimentally observed cluster phases in polyelectrolyte-liposome solutions can be interpreted as a kinetic arrested state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bordi, C. Cametti, S. Sennato, D. Viscomi, J. Chem. Phys. 126, 024902 (2007).

    Google Scholar 

  2. F. Bordi, C. Cametti, M. Diociaiuti, S. Sennato, Phys. Rev. E Rapid Commun. 71, 050401 (2005).

    Google Scholar 

  3. A. Yaroslavov, A. Rakhnyanskaya, Y. Ermakov, T. Burova, V.Y. Grinberg, F.M. Menger, Langmuir 23, 7539 (2007).

  4. D. Volodkin, V. Ball, P. Schaaf, J.C. Voegel, H. Möhwald, Biochim. Biophys. Acta 1768, 280 (2007).

    Google Scholar 

  5. D. Napper, Polymeric Stabilization of Colloidal Dispersion (Academic, London, 1983).

  6. J.H. Felgner, R. Kumar, C.N. Sridhar, C.J. Wheeler, Y.J. Tsai, R. Border, P. Ramsey, M. Martin, P.L. Felgner, J. Biol. Chem. 269, 2550 (1994).

    Google Scholar 

  7. J. Felgner, Proc. Natl. Acad. Sci. U.S.A. 84, 7413 (1987).

    Google Scholar 

  8. T.T. Nguyen, B.I. Shklovskii, J. Chem. Phys. 114, 5905 (2001).

    Google Scholar 

  9. T. Nguyen, A. Grosberg, B. Shklovskii, Phys Rev. Lett. 85, 1568 (2000).

    Google Scholar 

  10. A.Y. Grosberg, T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002).

    Google Scholar 

  11. M.P.D. Lima, S. Simoes, P. Pires, H. Faneca, Phys. Rev. E 71, 050401 (2005).

    Google Scholar 

  12. F. Bordi, C. Cametti, S. Sennato, D. Viscomi, Phys. Rev. E Rapid Commun. 74, 030402R (2006).

  13. S. Sennato, F. Bordi, C. Cametti, C. Marianecci, M. Carafa, J. Phys. Chem. B 112, 3702 (2008).

    Google Scholar 

  14. S. Zuzzi, C. Cametti, G. Onori, Langmuir 24, 6024 (2008).

  15. D. Truzzolillo, C. Cametti, S. Zuzzi, S. Sennato, in preparation (2008).

  16. C.R. Safinya, K. Ewert, A. Ahmad, H.M. Evans, U. Raviv, D.J. Needleman, A.J. Lin, N.L. Slack, C. George, C.E. Samuel, Philos. Trans. R. Soc. London, Ser. A 364, 2573 (2006).

    Google Scholar 

  17. C.R. Safinya, I. Koltover, J. Raedler, Curr. Opin. Colloid Interface Sci. 3, 69 (1998).

    Google Scholar 

  18. S. Sennato, F. Bordi, C. Cametti, M. Diociaiuti, P. Malaspina, Biochem. Biophys. Acta. 1714, 11 (2005).

    Google Scholar 

  19. E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

  20. J. Mou, D. Czajkowsky, Y. Zhang, Z. Shao, FEBS Lett. 371, 279 (1995).

    Google Scholar 

  21. D. Velegol, P.K. Thwar, Langmuir 17, 7687 (2001).

  22. R. Hogg, T.W. Healy., D.W. Fuerstenau, Trans. Faraday Soc. 62, 1638 (1966).

    Google Scholar 

  23. R. Tadmor, J. Phys.: Condens. Matter 13, L195 (2001).

  24. A.M. Puertas, G. Odriozola, J. Phys. Chem. B 111, 5564 (2007).

    Google Scholar 

  25. J. Sabin, G. Prieto, J. Ruso, P. Messina, F. Sarmiento, Phys. Rev. E 76, 011408 (2007).

    Google Scholar 

  26. S. Babu, M. Rottereau, T. Nicolai, J.C. Gimel, D. Durand, Eur. Phys. J. E 19, 203 (2006).

    Google Scholar 

  27. S. Babu, M. Rottereau, J.C. Gimel, T. Nicolai, J. Chem. Phys. 125, 184512 (2006).

    Google Scholar 

  28. B.H. Zimm, J. Chem. Phys. 24, 269 (1956).

    Google Scholar 

  29. R. Messina, C. Holm, K. Kremer, Phys. Rev. E 65, 041805 (2002).

    Google Scholar 

  30. G. Gillies, W. Lin, M. Borkovec, J. Phys. Chem. B 111, 8626 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cametti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truzzolillo, D., Bordi, F., Sciortino, F. et al. Kinetic arrest in polyion-induced inhomogeneously charged colloidal particle aggregation. Eur. Phys. J. E 29, 229–237 (2009). https://doi.org/10.1140/epje/i2009-10471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10471-1

PACS

Navigation