Skip to main content
Log in

Fractal aggregates evolution of methyl red in liquid crystal

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The spontaneous formation of dendritic aggregates is observed in a two-dimensional confined layered system consisting of a film composed of liquid crystal, dye and solvent cast above a polymer substrate. The observed aggregates are promoted by phase separation processes induced by dye diffusion and solvent evaporation. The growth properties of the aggregates are studied through the temporal evolution of their topological properties (surface, perimeter, fractal dimension). The fractal dimension of the completely formed structures, when they are coexistent with different types of structures, is consistent with theoretical and experimental values obtained for Diffusion-Limited Aggregates. Under different experimental conditions (temperature and local dye concentration) the structure forms without interactions with other kinds of structures, and its equilibrium fractal dimension is smaller. The fractal dimension is thus not a universal property of the observed structures, but rather depends on the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Mandelbrot, Les objects fractals: forme, hasard et dimension (Flammarion, Paris, 1975).

  2. Q. Yang, Mat. Chem. Phys. 78, 495 (2002).

    Google Scholar 

  3. W.T. Elam, S.A. Wolf, J. Sprague, D.U. Gubser, D. Van Vechten, G.L. Barz jr., P. Meakin, Phys. Rev. Lett. 54, 701 (1985).

    Google Scholar 

  4. M. Fujii, K. Arii, K. Yoshino, J. Phys.: Condens. Matter 3, 7207 (1991).

    Google Scholar 

  5. G.-W. Zhou, L. Wang, R.C. Birtcher, P.M. Baldo, J.E. Pearson, J.C. Yang, J.A. Eastman, Phys. Rev. Lett. 96, 226108 (2006).

    Google Scholar 

  6. T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Google Scholar 

  7. P. Jensen, A.-L. Barabási, H. Larralde, S. Havlin, H.E. Stanley, Chaos, Solitons Fractals 6, 227 (1995).

  8. P. Polanowski, J. Non-Crystal. Solids 353, 4575 (2007).

    Google Scholar 

  9. M. Pope, E.C. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edition (Oxford Scientific, 1999) p. 39.

  10. F. Ciuchi, A. Mazzulla, G. Cipparrone, J. Opt. Soc. Am. B 19, 2531 (2002).

    Google Scholar 

  11. F. Ciuchi, A. Mazzulla, G. Carbone, G. Cipparrone, Macromolecules 36, 5689 (2003).

  12. O. Karthaus, T. Imai, J. Sato, S. Kurimura, R. Nakamura, Appl. Phys. A 80, 903 (2005).

    Google Scholar 

  13. O. Karthaus, Y. Honma, D. Taguchi, Y. Fujiwarae, J. Surf. Sci. Nanotech. 3, 156 (2005).

    Google Scholar 

  14. J.M. Redondo, J. Grau, A. Platonov, G. Garzón, RIMNI 24, 23 (2008).

  15. H. Lee, T. Chang, Macromolecules 34, 937 (2001).

  16. A. Chandra, Solid State Ionics 86-88, 1437 (1996).

  17. V. Ferrero, J.F. Douglas, J.A. Warren, A. Karim, Phys. Rev. E 65, 042802 (2002).

    Google Scholar 

  18. R.Q. Hwang, J. Schröder, C. Günter, R.J. Behm, Phys. Rev. Lett. 67, 3279 (1991).

    Google Scholar 

  19. G.P. Luo, Z.M. Ai, Z.H. Lu, Y. Wei, Phys. Rev. E 50, 409 (1994).

    Google Scholar 

  20. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada, Phys. Rev. Lett. 53, 286 (1984).

    Google Scholar 

  21. M.L. Broide, R.J. Cohen, Phys. Rev. Lett. 64, 20261 (1990).

    Google Scholar 

  22. S. Wang, H. Xin, J. Phys. Chem. B 104, 5681 (2000).

    Google Scholar 

  23. L. Niemeyer, L. Pietronero, H.J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984).

    Google Scholar 

  24. M.B. Mineev-Weinstein, R. Mainieri, Phys. Rev. Lett. 72, 880 (1994).

    Google Scholar 

  25. C. Amitrano, A. Coniglio, F. di Liberto, J. Phys. A: Math. Gen. 21, L201 (1988).

  26. Z. Saghi, X. Xu, G. Möbus, Phys. Rev. B 78, 205428 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sorriso-Valvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciuchi, F., Sorriso-Valvo, L., Mazzulla, A. et al. Fractal aggregates evolution of methyl red in liquid crystal. Eur. Phys. J. E 29, 139–147 (2009). https://doi.org/10.1140/epje/i2009-10460-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10460-4

PACS

Navigation