Skip to main content
Log in

Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented by D. Lacoste, M. Cosentino Lagomarsino, and J.F. Joanny (EPL 77, 18006 (2007)), by providing a physical explanation for a destabilizing term proportional to k 3 in the fluctuation spectrum, which we relate to a nonlinear (E2) electrokinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives the flow along the field axis toward surface protrusions; in contrast, we predict “reverse” ICEO flows around driven membranes, due to curvature-induced tangential fields within a nonequilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For an extensive review, see U. Seifert, Adv. Phys. 46, 13 (1997).

  2. R. Dimova, K.A. Riske, S. Aranda, N. Bezlyepkina, R. Knorr, R. Lipowsky, Soft Matter 3, 817 (2007).

  3. B. Hille, Ion Channels of Excitable Membranes (Sinauer Press, Sunderland, MA, 2001).

  4. E. Kandel, J. Schwartz, T. Jessel, Principles of Neural Science (MacGraw-Hill, New York, 2000).

  5. T. Yeung, M. Terebiznik, L. Yu, J. Silvius, W.M. Abidi, M. Philips, T. Levine, A. Kapus, S. Grinstein, Science 313, 347 (2006).

    Google Scholar 

  6. S. Lecuyer, G. Fragneto, T. Charitat, Eur. Phys. J. E 21, 153 (2006).

    Google Scholar 

  7. D. Andelman, in Handbook of Biological Physics, edited by R. Lipowsky, E. Sackmann (Elsevier, Amsterdam, 1995).

  8. P. Pincus, J.-F. Joanny, D. Andelman, Europhys. Lett. 11, 763 (1990).

    Google Scholar 

  9. T. Chou, M.V. Jaric, E. Siggia, Biophys. J. 72, 2042 (1997).

  10. B. Duplantier, R.E. Goldstein, V. Romero-Rochin, A.I. Pesci, Phys. Rev. Lett. 65, 508 (1990)

    Google Scholar 

  11. M. Winterhalter, W. Helfrich, J. Phys. Chem. 92, 6865 (1988)

    Google Scholar 

  12. H.N.W. Lekkerkerker, Physica A 159, 319 (1989).

  13. S.T. Milner, J.-F. Joanny, P. Pincus, Europhys. Lett. 9, 495 (1989).

    Google Scholar 

  14. M. Kiometzis, H. Kleinert, Phys. Lett. A 140, 520 (1989).

    Google Scholar 

  15. J. Prost, R. Bruinsma, Europhys. Lett. 33, 321 (1996).

    Google Scholar 

  16. S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84, 3494 (2000).

    Google Scholar 

  17. S. Ramaswamy, M. Rao, C. R. Acad. Sci. Paris. 2, Série IV, 817 (2001).

  18. J.-B. Manneville, P. Bassereau, D. Lévy, J. Prost, Phys. Rev. Lett. 82, 4356 (1999).

    Google Scholar 

  19. J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001).

    Google Scholar 

  20. S. Sankararaman, G.I. Menon, P.B.S. Kumar, Phys. Rev. E 66, 031914 (2002).

    Google Scholar 

  21. D. Lacoste, A.W.C. Lau, Europhys. Lett. 70, 418 (2005).

    Google Scholar 

  22. H.-Y. Chen, Phys. Rev. Lett. 92, 168101 (2004).

    Google Scholar 

  23. M.C. Sabra, O.G. Mouritsen, Biophys. J. 74, 745 (1998).

    Google Scholar 

  24. M.A. Lomholt, Phys. Rev. E 73, 061913

  25. D. Lacoste, M. Cosentino Lagomarsino, J.F. Joanny, EPL 77, 18006 (2007).

    Google Scholar 

  26. W.B. Russel, D. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, UK, 1989)

  27. A. Ajdari, Phys. Rev. E 61, R45 (2000)

  28. M.Z. Bazant, T.M. Squires, Phys. Rev. Lett. 92, 066101 (2004)

    Google Scholar 

  29. V. Kumaran, Phys. Rev. E 64, 011911 (2001)

    Google Scholar 

  30. V.A. Murtsovkin, Kolloidn. Zh. 58, 358 (1996).

    Google Scholar 

  31. A. Ramos, H. Morgan, N.G. Green, A. Castellanos, J. Colloid Interface Sci. 217, 420 (1999)

    Google Scholar 

  32. J.A. Levitan, S. Devasenathipathy, V. Studer, Y. Ben, T. Thorsen, T.M. Squires, M.Z. Bazant, Colloids Surf. A 267, 122 (2005).

    Google Scholar 

  33. C.K. Harnett, J. Templeton, K.A. Dunphy-Guzman, Y.M. Senousy, M.P. Kanouff, Lab on a Chip 8, 565 (2008).

    Google Scholar 

  34. S.K. Thamida, H.C. Chang, Phys. Fluids 14, 4315 (2002).

    Google Scholar 

  35. G. Yossifon, I. Frankel, T. Miloh, Phys. Fluids 18, 117108 (2006)

    Google Scholar 

  36. S. Gangwal, O.J. Cayre, M.Z. Bazant, O.D. Velev, Phys. Rev. Lett. 100, 058302 (2008).

    Google Scholar 

  37. F. Divet, G. Danker, C. Misbah, Phys. Rev. E 72, 041901 (2005).

    Google Scholar 

  38. P.-C. Zhang, A.M. Keleshian, F. Sachs, Nature 413, 428 (2001).

  39. T. Ambjörnsson, M.A. Lomholt, P.L. Hansen, Phys. Rev. E 75, 051916 (2007).

    Google Scholar 

  40. S. Chatkaew, M. Leonetti, Eur. Phys. J. E 17, 203 (2005)

    Google Scholar 

  41. J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, 1999).

  42. M.Z. Bazant, K.T. Chu, B.J. Bayly, SIAM J. Appl. Math. 65, 1463 (2005)

    Google Scholar 

  43. B. Zaltzman, I. Rubinstein, J. Fluid Mech. 579, 173 (2007).

    Google Scholar 

  44. P. Sens, H. Isambert, Phys. Rev. Lett. 88, 128102 (2002).

    Google Scholar 

  45. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).

  46. M.D. El Alaoui Faris, D. Lacoste, J. Pécréaux, J.-F. Joanny, J. Prost, P. Bassereau, Phys. Rev. Lett. 102, 038102 (2009).

    Google Scholar 

  47. T. Bickel, Phys. Rev. E 75, 041403 (2007).

    Google Scholar 

  48. A. Levine, F.C. MacKintosh, Phys. Rev. E 66, 061606 (2002).

    Google Scholar 

  49. M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E 70, 021506 (2004).

    Google Scholar 

  50. E.M. Itskovich, A.A. Kornyshev, M.A. Vorotyntsev, Phys. Status Solidi A 39, 229 (1977).

    Google Scholar 

  51. A. Bonnefont, F. Argoul, M.Z. Bazant, J. Electroanal. Chem. 500, 52 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lacoste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacoste, D., Menon, G.I., Bazant, M.Z. et al. Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane. Eur. Phys. J. E 28, 243–264 (2009). https://doi.org/10.1140/epje/i2008-10433-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10433-1

PACS

Navigation