Skip to main content
Log in

Discotic molecules in cylindrical nanopores: A Monte Carlo study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report Monte Carlo simulations of a model discotic molecule embedded in cylindrical pores. We consider a planar anchoring of the molecules on the surface for two different cylinder radii: R * = 5 and R * = 10 , in units of the molecular diameter. For both radii, we note that the system is progressively structured in concentric shells when decreasing the temperature. With the small radius, we observe continuous transitions from an isotropic to a nematic phase and then to a crystal one. The radius of the pores is sufficiently small to force the crystal to grow along their main axis. However some orientational discrepancies are observed: some samples present a zigzag configuration. With the big radius, the situation is more complex and it is likely that different scenarios are available. The crystals can be built along the main axis of the cylinders, as for the small radius, but also in any other direction. Thus we observe samples with different orientational domains. In the case of crystals oriented along the nanopore axis, we note that only the first 5 shells close to the wall are sensitive to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, B.K. Sadashiva, K.A. Suresh, Pramana 9, 471 (1977).

  2. V. Percec, M. Glodde, T.K. Bera, Y. Miura, I. Shiyanovskaya, K.D. Singer, V.S.K. Balagurusamy, P.A. Heiney, I. Schnell, A. Rapp, H.-W. Spiess, S.D. Hudson, H. Duan, Nature 419, 384 (2002).

  3. H. Masuda, K. Fukuda, Science 268, 1466 (1995).

  4. M. Steinhart, S. Zimmermann, P. Goring, A.K. Schaper, U. Gösele, C. Weder, J.H. Wendorff, Nano Lett. 5, 429 (2005).

  5. T.Q. Nguyen, M.L. Bushey, L.E. Brus, C. Nuckolls, J. Am. Chem. Soc. 124, 15051 (2002).

    Google Scholar 

  6. T.S. Petrova, J.K. Vij, A. Kocot, Europhys. Lett. 44, 198 (1998).

    Google Scholar 

  7. E. Grelet, H. Block, Europhys. Lett. 73, 712 (2006).

    Google Scholar 

  8. P.E. Cladis, M. Kleman, J. Phys. (Paris) 33, 591 (1972).

    Google Scholar 

  9. R.B. Meyer, Philos. Mag. 27, 405 (1973).

    Google Scholar 

  10. S. Kralj, S. Žumer, Phys. Rev. A 45, 2461 (1992).

    Google Scholar 

  11. S. Kralj, S. Žumer, Phys. Rev. E 51, 366 (1995).

    Google Scholar 

  12. C. Chiccoli, P. Pasini, F. Semeria, E. Berggren, C. Zannoni, Mol. Cryst. Liq. Cryst. 290, 237 (1996).

    Google Scholar 

  13. Z. Bradač, S. Kralj, S. Žumer, Phys. Rev. E 58, 7447 (1998).

    Google Scholar 

  14. A.M. Smondyrev, R.A. Pelcovits, Liq. Cryst. 26, 235 (1999).

    Google Scholar 

  15. N. Priezjev, R.A. Pelcovits, Phys. Rev. E 62, 6734 (2000).

    Google Scholar 

  16. C. Stillings, M. Steinhart, S. Zimmermann, A.K. Schaper, B. Brandl, U. Gösele, C. Weder, E. Martin, G. Germano, J.H. Wendorff, Discotic liquid crystals in cylindrical confinement: Supramolecular architecture of LC nanorods, in 34. Arbeitstagung Flüssigkristalle 2006, Freiburg, 29-31 March 2006

  17. L. Bellier-Castella, D. Caprion, J.-P. Ryckaert, J. Chem. Phys. 121, 4874 (2004).

    Google Scholar 

  18. M.M. Pineiro, A. Galindo, A. O. Parry, Soft Matter 3, 768 (2007).

    Google Scholar 

  19. A.P.J. Emerson, G.R. Luckhurst, S.G. Whatling, Mol. Phys. 82, 113 (1994).

    Google Scholar 

  20. A. Bates, G.R. Luckhurst, J. Chem. Phys. 104, 6696 (1996).

    Google Scholar 

  21. R. Berardi, S. Orlandi, C. Zannoni, J. Chem. Soc. Faraday Trans. 93, 1493 (1997).

    Google Scholar 

  22. D. Caprion, L. Bellier-Castella, J.-P. Ryckaert, Phys. Rev. E. 67, 041703 (2003).

    Google Scholar 

  23. G.D. Wall, D.J. Cleaver, Phys. Rev. E. 56, 4306 (1997).

    Google Scholar 

  24. G. Jiang, J. Zhang, X. Zhang, W. Wang, ANZIAM J. 46, E70 (2004).

  25. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1989).

  26. D. Chakrabarti, D.J. Wales, Phys. Rev. Lett. 100, 127801 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Caprion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caprion, D. Discotic molecules in cylindrical nanopores: A Monte Carlo study. Eur. Phys. J. E 28, 305–313 (2009). https://doi.org/10.1140/epje/i2008-10412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10412-6

PACS

Navigation