Skip to main content
Log in

Field-theoretical Renormalization-Group approach to critical dynamics of crosslinked polymer blends

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We consider a crosslinked polymer blend that may undergo a microphase separation. When the temperature is changed from an initial value towards a final one very close to the spinodal point, the mixture is out equilibrium. The aim is the study of dynamics at a given time t, before the system reaches its final equilibrium state. The dynamics is investigated through the structure factor, S(q, t), which is a function of the wave vector q, temperature T, time t, and reticulation dose D. To determine the phase behavior of this dynamic structure factor, we start from a generalized Langevin equation (model C) solved by the time composition fluctuation. Beside the standard de Gennes Hamiltonian, this equation incorporates a Gaussian local noise, ζ. First, by averaging over ζ, we get an effective Hamiltonian. Second, we renormalize this dynamic field theory and write a Renormalization-Group equation for the dynamic structure factor. Third, solving this equation yields the behavior of S(q, t), in space of relevant parameters. As result, S(q, t) depends on three kinds of lengths, which are the wavelength q −1, a time length scale R(t) ∼ t 1/z, and the mesh size ξ *. The scale R(t) is interpreted as the size of growing microdomains at time t. When R(t) becomes of the order of ξ *, the dynamics is stopped. The final time, t *, then scales as t *ξ * z, with the dynamic exponent z = 6−η. Here, η is the usual Ising critical exponent. Since the final size of microdomains ξ * is very small (few nanometers), the dynamics is of short time. Finally, all these results we obtained from renormalization theory are compared to those we stated in some recent work using a scaling argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-G. de Gennes, J. Phys. Lett. 40, 69 (1979).

    Article  Google Scholar 

  2. A. Bettachy, A. Derouiche, M. Benhamou, M. Daoud, J. Phys. II 1, 153 (1991).

    Article  Google Scholar 

  3. A. Derouiche, A. Bettachy, M. Benhamou, M. Daoud, Macromolecules 25, 7188 (1992).

    Article  Google Scholar 

  4. T.A. Vilgis, M. Benmouna, M. Daoud, M. Benhamou, A. Bettachy, A. Derouiche, Polym. Network Blends 3, 59 (1993).

    Google Scholar 

  5. M. Benmouna, T.A. Vilgis, M. Daoud, M. Benhamou, Macromolecules 27, 1172 (1994).

    Article  Google Scholar 

  6. M. Benmouna, T.A. Vilgis, M. Benhamou, A. Babaoui, M. Daoud, Macromol: Theory Simul. 3, 557 (1994).

    Article  Google Scholar 

  7. A. Bettachy, A. Derouiche, M. Benhamou, M. Benmouna, T.A. Vilgis, M. Daoud, Macromol: Theory Simul. 4, 67 (1995).

    Article  Google Scholar 

  8. M. Benhamou, J. Chem. Phys. 102, 5854 (1995).

    Article  ADS  Google Scholar 

  9. D.J. Read, M.G. Brereton, T.C.B. McLeish, J. Phys. II 5, 1679 (1995).

    Article  Google Scholar 

  10. A. Bettachy, Thesis, Hassan II-Mohammedia University, 1995.

  11. A. Derouiche, Thesis, Hassan II-Mohammedia University, 1995.

  12. M. Riva, V.G. Benza, J. Phys. II 7, 285 (1997).

    Article  Google Scholar 

  13. M. Benhamou, A. Derouiche, A. Bettachy, J. Chem. Phys. 106, 2513 (1997).

    Article  ADS  Google Scholar 

  14. A. Derouiche, M. Benhamou, A. Bettachy, Eur. Phys. J. E 13, 353 (2005).

    Article  Google Scholar 

  15. R.M. Briber, B.J. Bauer, Macromolecules 21, 3296 (1988).

    Article  Google Scholar 

  16. M. Benhamou, M. Chahid, Physica A 373, 153 (2007).

    Article  ADS  Google Scholar 

  17. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989).

    Google Scholar 

  18. C. Itzykson, J.-M. Drouffe, Statistical Field Theory: 1 and 2 (Cambridge University Press, 1989).

  19. L. van Hove, Phys. Rev. 93, 249 (1954); 95, 1374 (1954).

    Article  ADS  Google Scholar 

  20. M. Benhamou, Int. J. Mod. Phys. A 8, 2581 (1993).

    Article  ADS  Google Scholar 

  21. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).

    Google Scholar 

  22. P.-G. de Gennes, Scaling Concept in Polymer Physics (Cornell University Press, 1979).

  23. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  24. G. ’t Hooft, Nucl. Phys. B 61, 455 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  25. J.C. Collins, Nucl. Phys. B 80, 341 (1974).

    Article  ADS  Google Scholar 

  26. H.K. Jansen, Z. Phys. B 23, 377 (1976); R. Bausch, H.K. Jansen, H. Wagner, Z. Phys. B 24, 113 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  27. F. Langouche, D. Roekaerts, E. Tirapegui, Physica A 95, 252 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Amit, Field Theory, the Renormalization Group and Critical Phenomena (McGraw-Hill, New-York, 1978).

    Google Scholar 

  29. P.-G. de Gennes, J. Phys. Lett. (Paris) 38, L–441 (1977); J.-F. Joanny, J. Phys. A 11, L-177 (1978); K. Binder, J. Chem. Phys. 79, 6387 (1983).

    Google Scholar 

  30. F.S. Battes et al., Phys. Rev. Lett. 65, 1893 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benhamou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhamou, M., Chahid, M. Field-theoretical Renormalization-Group approach to critical dynamics of crosslinked polymer blends. Eur. Phys. J. E 27, 57–62 (2008). https://doi.org/10.1140/epje/i2008-10351-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10351-2

PACS

Navigation