Skip to main content
Log in

Physical aging of glassy PMMA/toluene films: Influence of drying/swelling history

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Gravimetry experiments in a well-controlled environment have been performed to investigate aging for a glassy PMMA/toluene film. The temperature is constant and the control parameter is the solvent vapor pressure above the film (i.e. the activity). Several experimental protocols have been used, starting from a high activity where the film is swollen and rubbery and then aging the film at different activities below the glass transition. Desorption and resorption curves have been compared for the different protocols, in particular in terms of the softening time, i.e. the time needed by the sample to recover an equilibrium state at high activity. Non-trivial behaviors have been observed, especially at small activities (deep quench). A model is proposed, extending the Leibler-Sekimoto approach to take into account the structural relaxation in the glassy state, using the Tool formalism. This model well captures some of the observed phenomena, but fails in describing the specific kinetics observed when aging is followed by a short but deep quench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Araki, T. Shimamoto, T. Yamamoto, T. Masuda, Polymer 42, 4433 (2001).

    Article  Google Scholar 

  2. L. Bellon, S. Ciliberto, C. Laroche, Europhys. Lett. 51, 551 (2000).

    Article  ADS  Google Scholar 

  3. L. Bellon, S. Ciliberto, C. Laroche, Eur. Phys. J. B 25, 223 (2002).

    Article  ADS  Google Scholar 

  4. V. Dupuis, E. Vincent, J.P. Bouchaud, J. Hammann, A. Ito, H. Haruga Katori, Phys. Rev. B 64, 174204 (2001).

    Article  ADS  Google Scholar 

  5. J.M. Hutchinson, Prog. Polym. Sci. 20, 703 (1995).

    Article  Google Scholar 

  6. F. Krzakala, F. Ricci-Tersenghi, J. Phys. Conf. Ser. 40, 42 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Miyamoto, K. Fukao, H. Yamao, K. Sekimoto, Phys. Rev. Lett. 88, 225504 (2002).

    Article  ADS  Google Scholar 

  8. T. Narita, C. Beauvais, P. Hébraud, F. Lequeux, Eur. Phys. J. E 14, 287 (2004).

    Article  Google Scholar 

  9. H. Yardimci, R.L. Leheny, Europhys. Lett. 62, 203 (2003).

    Article  ADS  Google Scholar 

  10. D. Punsalan, W.J. Koros, Polymer 46, 10214 (2005).

    Article  Google Scholar 

  11. M. Alcoutlabi, F. Briatico-vangosa, G.B. McKenna, J. Polym. Sci. Part B 40, 2050 (2002).

    Article  Google Scholar 

  12. Y. Zheng, G.B. McKenna, Macromolecules 36, 2387 (2003).

    Article  Google Scholar 

  13. Y. Zheng, R.D. Priestley, G.B. McKenna, J. Polym. Sci. Part B 42, 2107 (2004).

    Article  Google Scholar 

  14. F. Doumenc, B. Guerrier, C. Allain, Europhys. Lett. 76, 630 (2006).

    Article  ADS  Google Scholar 

  15. L. Leibler, K. Sekimoto, Macromolecules 26, 6937 (1993).

    Article  Google Scholar 

  16. J.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).

    Article  ADS  Google Scholar 

  17. R. Priestley, M.K. Mundra, N.J. Barnett, L.J. Broadbelt, J.M. Torkelson, Austr. J. Chem. 60, 765 (2007).

    Article  Google Scholar 

  18. A.C. Dubreuil, F. Doumenc, B. Guerrier, C. Allain, Macromolecules 36, 5157 (2003).

    Article  Google Scholar 

  19. A. Laschitsch, C. Bouchard, J. Habicht, M. Schimmel, J. Ruhe, D. Johannsmann, Macromolecules 32, 1244 (1999).

    Article  Google Scholar 

  20. H. Bodiguel, C. Fretigny, Eur. Phys. J. E 19, 185 (2006).

    Article  Google Scholar 

  21. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1995).

  22. A.C. Saby-Dubreuil, B. Guerrier, C. Allain, D. Johannsmann, Polymer 42, 1383 (2001).

    Article  Google Scholar 

  23. J. Brandrup, E.H. Immergut, Polymer Handbook (Wiley Interscience, New York, 1989).

    Google Scholar 

  24. A.F.M. Barton, CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters (CRC Press, 1990).

  25. C. Wohlfarth, Vapor-Liquid Equilibrium Data of Binary Polymer Solutions (Elsevier, Amsterdam, 1994).

    Google Scholar 

  26. V.T. Stannett, W.J. Koros, D.R. Paul, H.K. Lonsdale, R.W. Baker, Adv. Polym. Sci. 32, 69 (1979).

    Google Scholar 

  27. A.R. Berens, Polym. Eng. Sci. 20, 95 (1980).

    Article  Google Scholar 

  28. G.G. Lipscomb, AIChE J. 36, 1505 (1990).

    Article  Google Scholar 

  29. A.J. Kovacs, J. Polym. Sci. 30, 131 (1958).

    Article  Google Scholar 

  30. S. Merabia, D. Long, J. Chem. Phys. 125, 234901 (2006).

    ADS  Google Scholar 

  31. C.P. Lindsey, G.D. Patterson, J. Chem. Phys. 73, 3348 (1980).

    Article  ADS  Google Scholar 

  32. T.S. Chow, Macromolecules 13, 362 (1980).

    Article  Google Scholar 

  33. Bodiguel, F. Lequeux, H. Montes, J. Stat. Mech. P01020 (2008).

  34. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Article  Google Scholar 

  35. M. Souche, D. Long, Europhys. Lett. 77, 48002 (2007).

    Article  ADS  Google Scholar 

  36. S.L. Simon, J.-Y. Park, G.B. McKenna, Eur. Phys. J. E 8, 209 (2002).

    Article  Google Scholar 

  37. H. Richardson, M. Sferrazza, J.L. Keddie, Eur. Phys. J. E 12, 437 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Doumenc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doumenc, F., Bodiguel, H. & Guerrier, B. Physical aging of glassy PMMA/toluene films: Influence of drying/swelling history. Eur. Phys. J. E 27, 3–11 (2008). https://doi.org/10.1140/epje/i2008-10345-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10345-0

PACS

Navigation