Skip to main content
Log in

A geometrical template for toroidal aggregates of chiral macromolecules

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The formation of toroidal aggregates by long chiral molecules of biological origin, as collagen, f-actin and DNA, or by chiral synthetic polypeptides has been observed in specific ionic environments. Such aggregates have received considerable attention in order to identify the various physical factors susceptible to contribute to this original morphogenesis, particularly in the case of those formed by DNA. We consider here the eventual role of a spontaneous uniform twist of micrometric pitch whose possible occurrence is suggested by some observations and by recent studies of DNA dense phases exhibiting cholesteric and “blue” phase structures. Following an approach inspired by the geometry and topology of fiber bundles, we show that the necessity to propagate such a twist in a dense bundle of fibers leads to the formation of aggregates having a toroidal shape and, in the case of the nanometric aggregates of DNA, characteristic sizes similar to those observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cooper, Biochem. J. 112, 515 (1969).

    Google Scholar 

  2. Y. Bouligand, J.P. Denefle, J.P. Lechaire, M. Maillard, Biol. Cell 54, 143 (1985).

    Google Scholar 

  3. J.J.B.P. Blais, P.H. Geil, J. Ultrastruct. Res. 22, 303 (1968).

    Article  Google Scholar 

  4. J.X. Tang, A. Kas, J.V. Shah, P.A. Janmey, Eur. Biophys. J. Biophys. Lett. 30, 477 (2001).

    Google Scholar 

  5. L.C. Gosule, J.A. Schellman, Nature 259, 311 (1976).

    Article  Google Scholar 

  6. U.K. Laemmli, Proc. Natl. Acad. Sci. U.S.A. 72, 4288 (1975).

    Article  ADS  Google Scholar 

  7. D.K. Chattoraj, L.C. Gosule, J.A. Schellman, J. Mol. Biol. 121, 327 (1978).

    Article  Google Scholar 

  8. J. Widom, R.L. Baldwin, J. Mol. Biol. 144, 431 (1980).

    Article  Google Scholar 

  9. Y.M. Evdokimov, A.L. Platonov, A.S. Tikhonenko, Y.M. Varshavsky, FEBS Lett. 23, 180 (1972).

    Article  Google Scholar 

  10. P.G. Arscott, An-Zhi Li, V. Bloomfield, Biopolymers 30, 610 (1990).

    Article  Google Scholar 

  11. G.E. Plum, P.G. Arscott, V.A. Bloomfield, Biopolymers 30, 631 (1990).

    Article  Google Scholar 

  12. N.V. Hud, K.H. Downing, Proc. Natl. Acad. Sci. U.S.A. 98, 14925 (2001).

    Article  ADS  Google Scholar 

  13. C.C. Conwell, I.D. Vilfan, N.V. Hud, Proc. Natl. Acad. Sci. U.S.A. 100, 9296 (2003).

    Article  ADS  Google Scholar 

  14. R. Podgornik, H.H. Strey, D.C. Rau, V. Parsegian, Biophys. Chem. 57, 111 (1995).

    Article  Google Scholar 

  15. J. Ubbing, T. Odjik, Biophys. J. 68, 54 (1995).

    Article  ADS  Google Scholar 

  16. N.V. Hud, K.H. Downing, R. Balhorn, Proc. Natl. Acad. Sci. U.S.A. 92, 3581 (1995).

    Article  ADS  Google Scholar 

  17. S.Y. Park, D. Harries, W.M. Gelbart, Biophys. J. 75, 714 (1998).

    ADS  Google Scholar 

  18. I.M. Kulic, D. Andrienko, M. Deserno, Europhys. Lett. 67, 418 (2004).

    Article  ADS  Google Scholar 

  19. J.F. Sadoc, Int. J. Mod. Phys. B 14, 737 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Leforestier, F. Livolant, private communication.

  21. P.G. de Gennes, The physics of Liquid Crystals (Clarendon Press, 1974).

  22. B. Pansu, E. Dubois-Violette, J. Phys. (Paris) 51, C7-281 (1990).

    Google Scholar 

  23. F. Gaill, J. Phys. (Paris) 51, C7-169 (1990).

    Google Scholar 

  24. H. Toriumi, T. Yamasaki, A. Abe, E.T. Samulski, Liq. Cryst. 1, 86 (1986).

    Article  Google Scholar 

  25. D. Durand, J. Doucet, F. Livolant, J. Phys. II 2, 1769 (1992).

    Article  Google Scholar 

  26. J. Pelta, D. Durand, J. Doucet, F. Livolant, Biophys. J. 71, 48 (1996).

    ADS  Google Scholar 

  27. E. Raspaud, D. Durand, F. Livolant, Biophys. J. 88, 392 (2005).

    Article  ADS  Google Scholar 

  28. A. Leforestier, F. Livolant, Liq. Cryst. 17, 651 (1994).

    Article  Google Scholar 

  29. J.F. Sadoc, R. Mosseri, Geometrical Frustration (Cambridge University Press, 1999)

  30. As the coordinates of the 2d sphere $S_2$ are expressed in $R_3$ as functions of two angular parameters $\theta$, $\varphi$.

  31. Strictly speaking, the first layer is at the distance $d$ from the fiber $n = 0$ and the equidistance for the others is $d\sqrt{3}/2$.

  32. O. Lambert, L. Letellier, W.M. Gelbart, J.L. Rigaud, Proc. Natl. Acad. Sci. U.S.A. 97, 7248 (2000).

    Article  ADS  Google Scholar 

  33. R. Balhorn, L. Brewer, M. Corzett, Mol. Reproduc. Develop. 56, 230 (2000).

    Article  Google Scholar 

  34. W.B. Fu, X.L. Wang, X.H. Zhang, S.Y. Ran, J. Yan, M. Li, J. Am. Chem. Soc. 128, 15040 (2006).

    Article  Google Scholar 

  35. D.D. Dunlap, A. Maggi, M.R. Soria, L. Monaco, Nucl. Acid Res. 25, 3095 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charvolin, J., Sadoc, J.F. A geometrical template for toroidal aggregates of chiral macromolecules. Eur. Phys. J. E 25, 335–341 (2008). https://doi.org/10.1140/epje/i2008-10313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10313-8

PACS.

Navigation