Skip to main content
Log in

Coefficient of tangential restitution for viscoelastic spheres

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The collision of frictional granular particles may be described by an interaction force whose normal component is that of viscoelastic spheres while the tangential part is described by the model by Cundall and Strack (Géotechnique 29, 47 (1979)) being the most popular tangential collision model in Molecular Dynamics simulations. Albeit being a rather complicated model, governed by 5 phenomenological parameters and 2 independent initial conditions, we find that it is described by 3 independent parameters only. Surprisingly, in a wide range of parameters the corresponding coefficient of tangential restitution, εt, is well described by the simple Coulomb law with a cut-off at εt = 0. A more complex behavior of the coefficient of restitution as a function on the normal and tangential components of the impact velocity, g n and g t , including negative values of ε n , is found only for very small ratio g t /g n . For the analysis presented here we neglect dissipation of the interaction in normal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, Reine Angew. Math. 92, 156 (1882).

    Google Scholar 

  2. N.V. Brilliantov, F. Spahn, J.M. Hertzsch, T. Pöschel, Phys. Rev. E 53, 5382 (1996).

    Article  ADS  Google Scholar 

  3. T. Schwager, T. Pöschel, Phys. Rev. E 57, 650 (1998).

    Article  ADS  Google Scholar 

  4. R. Ramírez, T. Pöschel, N.V. Brilliantov, T. Schwager, Phys. Rev. E 60, 4465 (1999).

    Article  ADS  Google Scholar 

  5. T. Schwager, T. Pöschel, cond-mat/arXiv:0708.1434.

  6. J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I 6, 5 (1996).

    Article  Google Scholar 

  7. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979).

    Article  Google Scholar 

  8. Y. Zhang, C.S. Campbell, J. Fluid Mech. 237, 541 (1992).

    Article  ADS  Google Scholar 

  9. J. Lee, Phys. Rev. E 49, 281 (1994).

    Article  ADS  Google Scholar 

  10. G.H. Ristow, H.J. Herrmann, Phys. Rev. E 50, R5 (1994).

    Article  ADS  Google Scholar 

  11. L. Brendel, S. Dippel, Lasting Contacts in Molecular Dynamics Simulations, in Physics of Dry Granular Materials, edited by H.J. Herrmann, J.P. Hovi, S. Luding, NATO ASI Ser. E, Vol. 350 (Kluwer, Dordrecht, 1998) pp. 313–318.

    Google Scholar 

  12. D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, L.E. Silbert, Europhys. Lett. 56, 214 (2001).

    Article  ADS  Google Scholar 

  13. D. Volfson, A. Kudrolli, L.S. Tsimring, Phys. Rev. E 70, 051312 (2004).

    Article  ADS  Google Scholar 

  14. R. García-Rojo, F. Alonso-Marroquín, H.J. Herrmann, Phys. Rev. E 72, 041302 (2005).

    Article  ADS  Google Scholar 

  15. F. Alonso-Marroquín, H.J. Herrmann, J. Eng. Math. 52, 11 (2005).

    MATH  Google Scholar 

  16. L.S. Tsimring, D. Volfson, Modeling of impact cratering in granular media, in Powders and Grains-2005 (Balkema, Rotterdam, 2005).

    Google Scholar 

  17. T. Pöschel, H.J. Herrmann, Physica A 198, 441 (1993).

    Article  ADS  Google Scholar 

  18. H. Kuninaka, H. Hayakawa, Phys. Rev. Lett. 93, 154301 (2004).

    Article  ADS  Google Scholar 

  19. V. Becker, T. Schwager, T. Pöschel, Phys. Rev. E 77, 011304 (2008).

    Article  ADS  Google Scholar 

  20. O.R. Walton, R.L. Braun, J. Rheol. 30, 949 (1986).

    Article  ADS  Google Scholar 

  21. S. Luding, Phys. Rev. E 52, 4442 (1995).

    Article  ADS  Google Scholar 

  22. O. Herbst, M. Huthmann, A. Zippelius, Granular Matter 2, 211 (2000).

    Article  Google Scholar 

  23. O. Herbst, R. Cafiero, A. Zippelius, H.J. Herrmann, S. Luding, Phys. Fluids 17, 107102 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pöschel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwager, T., Becker, V. & Pöschel, T. Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27, 107–114 (2008). https://doi.org/10.1140/epje/i2007-10356-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10356-3

PACS

Navigation