Skip to main content
Log in

Diffusing wave spectroscopy in Maxwellian fluids

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present a critical assessment of the diffusing wave spectroscopy (DWS) technique for obtaining the characteristic lengths and for measuring the loss and storage moduli of a reasonable well-known wormlike micelle (WM) system. For this purpose, we tracked the Brownian motion of particles using DWS embedded in a Maxwellian fluid constituted by a wormlike micellar solution made of cetyltrimethylam-monium bromide (CTAB), sodium salicylate (NaSal), and water. We found that the motion of particles was governed by the viscosity of the solvent at short times and by the stress relaxation mechanisms of the giant micelles at longer times. From the time evolution of the mean square displacement of particles, we could obtain for the WM solution the cage size where each particle is harmonically bound at short times, the long-time diffusion coefficient, and experimental values for the exponent that accounts for the broad spectrum of relaxation times at the plateau onset time found in the 〈Δr 2(t)〉 vs. time curves. In addition, from the 〈Δr 2(t) vs. time curves, we obtained G′(ω) and G″(ω) for the WM solutions. All the DWS microreological information allowed us to estimate the characteristic lengths of the WM network. We compare our DWS microrheological results and characteristic lengths with those obtained with mechanical rheometers at different NaSal/CTAB concentration ratios and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Kim, S. Yang, Chem. Mater. 12, 3227 (2000).

    Article  Google Scholar 

  2. S. Esrahi, E. Tuval, A. Aserin, Adv. Colloid Interface Sci. 77, 128 (2006).

    Google Scholar 

  3. J.F. Berret, Rheology of wormlike micelles: Equilibrium Properties and Shear Banding Transitions, in Molecular Gels. Materials with Self-Assembled Fibrillar Networks, edited by R.G. Weiss, P. Terech (Springer, The Netherlands, 2006) p. 663.

    Google Scholar 

  4. L.M. Walker, Curr. Opin. Colloid Interface Sci. 6, 451 (2001).

    Article  Google Scholar 

  5. M.E. Cates, S.J. Candau, J. Phys.: Condens. Matter 2, 6869 (1990).

    Article  ADS  Google Scholar 

  6. M.E. Cates, Macromolecules 20, 2289 (1987).

    Article  ADS  Google Scholar 

  7. F.C. MacKintosh, C.F. Schmidt, Curr. Opin. Colloid Interface Sci. 4, 300 (1999).

    Article  Google Scholar 

  8. T. Gisler, D.A. Weitz, Curr. Opin. Colloid Interface Sci. 3, 586 (1998).

    Article  Google Scholar 

  9. A. Mukhopadhyay, S. Granick, Curr. Opin. Colloid Interface Sci. 6, 423 (2001).

    Article  Google Scholar 

  10. D.T. Chen, E.R. Weeks, J.C. Crocker, M.F. Islam, R. Verna, J. Gruber, A.J. Levine, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 90, 108301 (2003).

    Google Scholar 

  11. G. Maret, P.E. Wolf, Z. Phys. B 65, 409 (1987).

    Article  ADS  Google Scholar 

  12. D.J. Pine, D.A. Weitz, P.M. Chaikin, E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).

    Article  ADS  Google Scholar 

  13. J.L. Harden, V. Viasnoff, Curr. Opin. Colloid Interface Sci. 6, 438 (2001).

    Article  Google Scholar 

  14. D.A. Weitz, D.J. Pine, in Dynamic Light Scattering, edited by W. Brown (Oxford University Press, New York, 1993), Chapt. 16, pp. 652–720.

    Google Scholar 

  15. J.H. van Zanten, K.P. Rufener, Phys. Rev. E 62, 5389 (2000).

    Article  ADS  Google Scholar 

  16. F. Cardinaux, L. Cipelleti, F. Scheffold, P. Schurtenberger, Europhys. Lett. 57, 738 (2002).

    Article  ADS  Google Scholar 

  17. M. Bellour, M. Skouri, J.-P. Munch, P. Hebraud, Eur. Phys. J. E 8, 431 (2002).

    Google Scholar 

  18. F. Scheffold, J. Dispersion, Sci. Technol. 23, 591 (2002).

    Google Scholar 

  19. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).

    Article  ADS  Google Scholar 

  20. B.R. Dasgupta, S.Y. Tee, J.C. Crocker, B.J. Frisken, D.A. Weitz, Phys. Rev. E 65, 51505 (2002).

    Google Scholar 

  21. V. Viasnoff, F. Lequeux, D.J. Pine, Rev. Sci. Instrum. 73, 2336 (2002).

    Article  ADS  Google Scholar 

  22. J. Galvan-Miyoshi, R. Castillo, to be published in Rev. Mex. Fis. (2008).

  23. L.F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, F. Scheffold, J. Opt. Soc. Am. A 21, 1799 (2004).

    Article  ADS  Google Scholar 

  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).

    Google Scholar 

  25. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

    Google Scholar 

  26. G.K. Batchelor, J. Fluid Mech. 74, 1 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. H. Azzouzi, J.P. Decruppe, S. Lerouge, O. Greffier, Eur. Phys. J. E 17, 507 (2005).

    Article  Google Scholar 

  28. H. Rehage, H.J. Hoffmann, Phys. Chem. 92, 4712 (1988).

    Article  Google Scholar 

  29. R. Gamez-Corrales, personal communication.

  30. F. Kern, R. Zana, S.J. Candau, Langmuir 7, 1344 (1991).

    Article  Google Scholar 

  31. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  32. W. Jiang, J. Huang, Y. Wang, M. Laradji, J. Chem. Phys. 126, 44901 (2007).

    Article  Google Scholar 

  33. W.J. Briels, P. Mulder, W.K. den Otter, J. Phys: Condens. Matter 16, S3965 (2004).

    Article  ADS  Google Scholar 

  34. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Claredon, Oxford, 1986).

    Google Scholar 

  35. F. Nettesheim, N.J. Wagner, Langmuir 23, 5267 (2007).

    Article  Google Scholar 

  36. T. Shikata, S.J. Dahman, D.S. Pearson, Langmuir 10, 3470 (1994).

    Article  Google Scholar 

  37. N. Willenbacher, C. Oelschlaeger, M. Schopferer, P. Fischer, F. Cardinaux, F. Scheffold, Phys. Rev. Lett. 99, 68302 (2007).

    Google Scholar 

  38. R. Granek, M.E. Cates, J. Chem. Phys. 96, 4758 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvan-Miyoshi, J., Delgado, J. & Castillo, R. Diffusing wave spectroscopy in Maxwellian fluids. Eur. Phys. J. E 26, 369–377 (2008). https://doi.org/10.1140/epje/i2007-10335-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10335-8

PACS

Navigation