Skip to main content
Log in

Near-critical fluid boiling: Overheating and wetting films

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The heating of coexisting gas and liquid phases of pure fluid through its critical point makes the fluid extremely compressible, expandable, slows the diffusive transport, and decreases the contact angle to zero (perfect wetting by the liquid phase). We have performed experiments on near-critical fluids in a variable volume cell in the weightlessness of an orbiting space vehicle, to suppress buoyancy-driven flows and gravitational constraints on the liquid-gas interface. The high compressibility, high thermal expansion, and low thermal diffusivity lead to a pronounced adiabatic heating called the piston effect. We have directly visualized the near-critical fluid’s boundary layer response to a volume quench when the external temperature is held constant. We have found that when the system’s temperature T is increased at a constant rate past the critical temperature T c , the interior of the fluid gains a higher temperature than the hot wall (overheating). This extends previous results in temperature quenching experiments in a similarly prepared system when the gas is clearly isolated from the wall. Large elliptical wetting film distortions are also seen during these ramps. By ray tracing through the elliptically shaped wetting film, we find very thick wetting film on the walls. This wetting film is at least one order of magnitude thicker than films that form in the Earth’s gravity. The thick wetting film isolates the gas bubble from the wall allowing gas overheating to occur due to the difference in the piston effect response between gas and liquid. Remarkably, this overheating continues and actually increases when the fluid is ramped into the single-phase supercritical phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Moldover, J.V. Sengers, R.W. Gammon, R.J. Hoken, Rev. Mod. Phys. 51, 79 (1979).

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  ADS  Google Scholar 

  3. R. Wunenburger, Y. Garrabos, C. Lecoutre-Chabot, D. Beysens, J. Hegseth, Phys. Rev. Lett. 84, 4100 (2000).

    Article  ADS  Google Scholar 

  4. J. Hegseth, A. Oprisan, Y. Garrabos, V.S. Nikolayev, C. Lecoutre-Chabot, D. Beysens, Phys. Rev. E 72, 031602 (2005).

    Google Scholar 

  5. Y. Garrabos, C. Lecoutre-Chabot, J. Hegseth, V.S. Nikolayev, D. Beysens, Phys. Rev. E 64, 051602 (2001).

    Google Scholar 

  6. Y. Garrabos, M. Bonetti, D. Beysens, F. Perrot, T. Fröhlich, P. Carlès, B. Zappoli, Phys. Rev. E 57, 5665 (1998).

    Article  ADS  Google Scholar 

  7. J. Straub, L. Eicher, A. Haupt, Phys. Rev. E 51, 5556 (1995).

    Article  ADS  Google Scholar 

  8. C. Morteau, M. Salzman, Y. Garrabos, D. Beysens, in Proceedings of the 2nd European Symposium on Fluids in Space, edited by A. Viviani (Congressi srl, Rome, 1997) p. 327.

    Google Scholar 

  9. J.P. Delville, C. Salzman, Y. Garrabos, D. Beysens, in Proceedings of the 2nd European Symposium on Fluids in Space, edited by A. Viviani (Congressi srl, Rome, 1997) p. 312.

    Google Scholar 

  10. V. Gurfein, D. Beysens, Y. Garrabos, B. Le Neindre, Opt. Commun. 85, 147 (1991).

    Article  ADS  Google Scholar 

  11. B. Zappoli, D. Baylly, Y. Garrabos, B. Le Neidre, P. Guenoun, D. Beysens, Phys. Rev. A 41, 2264 (1990).

    Article  ADS  Google Scholar 

  12. S.H. Davis, Annu. Rev. Fluid Mech. 19, 403 (1987).

    Article  MATH  ADS  Google Scholar 

  13. J. Hegseth, Y. Garrabos, V.S. Nikolayev, C. Lecoutre-Chabot, R. Wunenburger, D. Beysens, Int. J. Thermophys. 23, 89 (2002).

    Article  Google Scholar 

  14. J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958).

    Article  MATH  ADS  Google Scholar 

  15. J. Hegseth, N. Rashidnia, A. Chai, Phys. Rev. E 54, 1640 (1996).

    ADS  Google Scholar 

  16. H.J. Palmer, J. Fluid Mech. 75, 487 (1976).

    Article  MATH  ADS  Google Scholar 

  17. J. Straub, in Proceedings of the IX European Symposium on Gravity-Dependent Phenomena in Physical Sciences, edited by L. Rathe, H. Walter, B. Feuerbacher (Springer, Berlin, 1995) p. 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hegseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegseth, J., Oprisan, A., Garrabos, Y. et al. Near-critical fluid boiling: Overheating and wetting films. Eur. Phys. J. E 26, 345–353 (2008). https://doi.org/10.1140/epje/i2007-10333-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10333-x

PACS

Navigation