Skip to main content
Log in

Probing the material properties and phase transitions of ferroelectric liquid crystals by determination of the Landau potential

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The full Landau potential of several, widely varying ferroelectric liquid-crystalline materials has been experimentally determined. Tilt angle and polarisation data is analysed across the SmA * to SmC * transition for varying applied electric-field amplitudes, allowing the determination of all the coefficients of the generalised Landau model of ferroelectric liquid crystals. The materials investigated encompass different materials, including low-polarisation mixtures to high-polarisation single-component materials. The materials also possess a variation in the order of the SmA * to SmC * phase transition from strongly first order to strongly second order. The effects of both the polarisation and order of phase transition of the system are discussed with respect to the various terms of the generalised Landau model. Further, the mechanisms behind the difference between a first- and second-order phase transition are discussed with respect to the Landau potential and the second Landau coefficient b .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Meyer, L. Liébert, L. Strzelecki, P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975).

  2. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).

    Article  ADS  Google Scholar 

  3. N.A. Clark, M.A. Handschy, S.T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).

    Article  Google Scholar 

  4. N.A. Clark, S.T. Lagerwall, Ferroelectrics 59, 25 (1984).

    Google Scholar 

  5. I. Muševič, R. Blinc, B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, Singapore, 2000).

  6. V. Dvořak, Ferroelectrics 7, 1 (1974).

    Article  Google Scholar 

  7. S.T. Lagerwall, Ferroelectic and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999).

  8. S. Garoff, R.B. Meyer, Phys. Rev. Lett. 38, 848 (1977)

    Article  ADS  Google Scholar 

  9. S. Kumar, Phys. Rev. A 23, 3207 (1981).

    Article  ADS  Google Scholar 

  10. C.R. Safinya, M. Kaplan, J. Als-Nielsen, R.J. Birgenau, D. Davidov, J.D. Litster, D.L. Johnson, M. Neubert, Phys. Rev. B 21, 4149 (1980).

    Article  ADS  Google Scholar 

  11. R.J. Birgenau, C.W. Garland, A.R. Kortan, J.D. Litster, M. Meichle, B.M. Ocko, C. Rosenblatt, L.J. Yu, J.W. Goodby, Phys. Rev. A 27, 1251 (1983).

    Article  ADS  Google Scholar 

  12. B. Zěkš, Mol. Cryst. Liq. Cryst. 114, 259 (1984).

    Article  Google Scholar 

  13. T. Carlsson, B. Zěkš, A. Levstik, C. Filipic, I. Levstik, R. Blinc, Phys. Rev. A 36, 1484 (1987).

    Article  ADS  Google Scholar 

  14. S.M. Beldon, S.J. Elston, Liq. Cryst. 26, 143 (1999).

    Article  Google Scholar 

  15. F. Giesselmann, P. Zugenmaier, Phys. Rev. E 52, 1762 (1995).

    Article  ADS  Google Scholar 

  16. F. Giesselmann, A. Heimann, P. Zugenmaier, Ferroelectrics 200, 237 (1997).

    Article  Google Scholar 

  17. P. Archer, I. Dierking, M. Hird, Soft Matter 3, 207 (2007).

    Article  MathSciNet  Google Scholar 

  18. J.S. Patel, S.D. Lee, J.W. Goodby, Phys. Rev. A 40, 2854 (1989).

    Article  ADS  Google Scholar 

  19. T.P. Rieker, N.A. Clark, D.S. Smith, G.S. Parmar, E.B. Sirota, C.R. Safinya, Phys. Rev. Lett. 59, 2658 (1987).

    Article  ADS  Google Scholar 

  20. C. Bahr, G. Heppke, Liq. Cryst. 2, 825 (1987).

    Article  Google Scholar 

  21. K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 22, L661 (1983).

    Google Scholar 

  22. Ch. Bahr, G. Heppke, B. Sabaschus, Ferroelectrics 84, 103 (1988).

    Google Scholar 

  23. P. Archer, I. Dierking, Eur. Phys. J. E 18, 373 (2005).

    Article  Google Scholar 

  24. P. Archer, I. Dierking, Phys. Rev. E 71, 041713 (2005).

    Article  ADS  Google Scholar 

  25. A. de Vries, Mol. Cryst. Liq. Cryst. 41, 27 (1977).

    Article  Google Scholar 

  26. F. Giesselmann, P. Zugenmaier, I. Dierking, S.T. Lagerwall, B. Stebler, M. Kašpar, V. Hamplová, M. Glogarová, Phys. Rev. E 60, 598 (1999).

    Article  ADS  Google Scholar 

  27. S. Bezner, M. Krueger, V. Hamplová, M. Glogarová, F. Giesselmann, J. Chem. Phys. 126, 054902 (2007).

    Article  ADS  Google Scholar 

  28. B. Žekš, C. Filipič, T. Carlsson, Physica Scr. T25, 362 (1989).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dierking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, P., Dierking, I., Görtz, V. et al. Probing the material properties and phase transitions of ferroelectric liquid crystals by determination of the Landau potential. Eur. Phys. J. E 25, 385–393 (2008). https://doi.org/10.1140/epje/i2007-10302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10302-5

PACS.

Navigation