Skip to main content
Log in

Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The plastic flow of a foam results from bubble rearrangements. We study their occurrence in experiments where a foam is forced to flow in 2D: around an obstacle; through a narrow hole; or sheared between rotating disks. We describe their orientation and frequency using a topological matrix defined in the companion paper (F. Graner, B. Dollet, C. Raufaste, and P. Marmottant, this issue, 25 (2008) DOI 10.1140/epje/i2007-10298-8), which links them with continuous plasticity at large scale. We then suggest a phenomenological equation to predict the plastic strain rate: its orientation is determined from the foam's local elastic strain; and its rate is determined from the foam's local elongation rate. We obtain a good agreement with statistical measurements. This enables us to describe the foam as a continuous medium with fluid, elastic and plastic properties. We derive its constitutive equation, then test several of its terms and predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 1999).

  2. A. Saint-Jalmes, D. Durian, J. Rheol. 43, 6 (1999).

    Article  Google Scholar 

  3. R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005).

  4. N. Phan-Thien, Understanding Viscoelasticity (Springer-Verlag, Berlin, 2002).

  5. C.W. Macosko, Rheology: Principles, Measurements and Applications (Wiley-VCH, 1994).

  6. T. Schwedoff, La rigidité des fluides, in Rapports du Congrès International de Physique, Vol. 1 (1900), p. 478.

  7. J. White, Rheol. Acta 20, 381 (1981).

    Article  MATH  Google Scholar 

  8. E. Janiaud, D. Weaire, S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006).

    Article  ADS  Google Scholar 

  9. P. Marmottant, F. Graner, Eur. Phys. J. E 23, 337 (2007).

    Article  Google Scholar 

  10. P. Saramito, J. Non-Newtonian Fluid Mech. 145, 1 (2007).

    Article  Google Scholar 

  11. S. Bénito, C.H. Bruneau, T. Colin, C. Gay, F. Molino, Eur. Phys. J. E 25, 225 (2008).

    Article  Google Scholar 

  12. P.R. de Souza Mendes, submitted to J. Fluid Mech.

  13. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Eur. Phys. J. E 15, 371 (2004).

    Article  Google Scholar 

  14. F. Graner, B. Dollet, C. Raufaste, P. Marmottant, this issue, 25 (2008) DOI 10.1140/epje/i2007-10298-8 http://hal.archives-ouvertes.fr/hal-00160733/en/.

  15. B. Dollet, F. Elias, C. Quilliet, C. Raufaste, M. Aubouy, F. Graner, Phys. Rev. E 71, 031403 (2005).

    Article  ADS  Google Scholar 

  16. B. Dollet, F. Graner, J. Fluid Mech. 585, 181 (2007)

    Article  ADS  MATH  Google Scholar 

  17. M. Asipauskas, M. Aubouy, J.A. Glazier, F. Graner, Y. Jiang, Granular Matter 5, 71 (2003).

    Article  MATH  Google Scholar 

  18. G. Debrégeas, H. Tabuteau, J.M. di Meglio, Phys. Rev. Lett. 87, 178305 (2001).

    Article  ADS  Google Scholar 

  19. C. Raufaste, B. Dollet, S. Cox, Y. Jiang, F. Graner, Eur. Phys. J. E 23, 217 (2007).

    Article  Google Scholar 

  20. C. Raufaste, PhD Thesis, Univ. Grenoble I (2007) http://tel.archives-ouvertes.fr/tel-00193248/en/.

  21. E. Janiaud, F. Graner, J. Fluid Mech. 532, 243 (2005).

    Article  ADS  MATH  Google Scholar 

  22. H.M. Princen, J. Colloid Interface Sci. 91, 160 (1983).

    Article  Google Scholar 

  23. W.L. Bragg, J.F. Nye, Proc. R. Soc. London, Ser. A 120, 474 (1947).

    Google Scholar 

  24. A. Gouldstone, K.J. Van Vliet, S. Suresh, Nature 411, 656 (2001), ISSN 0028-0836.

    Article  ADS  Google Scholar 

  25. DoITPoMS, Dissemination of Information Technology for the Promotion of Materials Science, University of Cambridge, UK http://www.doitpoms.ac.uk/tlplib/dislocations.

  26. F. Elias, C. Flament, J.A. Glazier, F. Graner, Y. Jiang, Philos. Mag. B 79, 729 (1999).

    Article  ADS  Google Scholar 

  27. M. Lundberg, K. Krishan, N. Xu, C.S. O'Hern, M. Dennin, arXiv:0707.4014v2.

  28. K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon Press, 1975).

  29. S. Vincent-Bonnieu, R. Höhler, S. Cohen-Addad, preprint.

  30. T.G. Mason, J. Bibette, D.A. Weitz, J. Colloid Interface Sci. 179, 439 (1996).

    Article  Google Scholar 

  31. T.G. Mason, J. Bibette, D.A. Weitz, Phys. Rev. Lett. 75, 10 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marmottant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmottant, P., Raufaste, C. & Graner, F. Discrete rearranging disordered patterns, part II: 2D plasticity, elasticity and flow of a foam. Eur. Phys. J. E 25, 371–384 (2008). https://doi.org/10.1140/epje/i2007-10300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10300-7

PACS.

Navigation