Skip to main content
Log in

Elastic charge density representation of the interaction via the nematic director field

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The interaction between particle-like sources of the nematic director distortions (e.g., colloids, point defects, macromolecules in nematic emulsions) allows for a useful analogy with the electrostatic multipole interaction between charged bodies. In this paper we develop this analogy to the level corresponding to the charge density and consider the general status of the pairwise approach to the nematic emulsions with finite-size colloids. It is shown that the elastic analog of the surface electric charge density is represented by the two transverse director components on the surface imposing the director distortions. The elastic multipoles of a particle are expressed as integrals over the charge density distribution on this surface. Because of the difference between the scalar electrostatics and vector nematostatics, the number of elastic multipoles of each order is doubled compared to that in the electrostatics: there are two elastic charges, two vectors of dipole moments, two quadrupolar tensors, and so on. The two-component elastic charge is expressed via the vector of external mechanical torque applied on the particle. As a result, the elastic Coulomb-like coupling between two particles is found to be proportional to the scalar product of the two external torques and does not directly depend on the particles' form and anchoring. The real-space Green function method is used to develop the pairwise approach to nematic emulsions and determine its form and restrictions. The pairwise potentials are obtained in the familiar form, but, in contrast to the electrostatics, they describe the interaction between pairs (dyads) of the elastic multipole moments. The multipole moments are shown to be uniquely determined by the single-particle director field, unperturbed by other particles. The pairwise approximation is applicable only in the leading order in the small ratio particle size-to-interparticle distance as the next order contains irreducible three-body terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.L. Lopatnikov, V.A. Namiot, Sov. Phys. JETP 48, 180 (1978).

    Google Scholar 

  • E. Terentjev, Phys. Rev. E 51, 1330 (1995).

    Article  ADS  Google Scholar 

  • O. Kuksenok, R.W. Ruhwandl, S. Shiyanovskii, E.M. Terentjev, Phys. Rev. E 54, 5198 (1996).

    Article  ADS  Google Scholar 

  • S. Ramaswamy, R. Nityananda, V.A. Gaghunathan, J. Prost, Mol. Cryst. Liq. Cryst. 288, 175 (1996).

    Article  Google Scholar 

  • R.W. Ruhwandl, E.M. Terentjev, Phys. Rev. E 55, 2958 (1997).

    Article  ADS  Google Scholar 

  • P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997).

    Article  Google Scholar 

  • T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998).

    Article  ADS  Google Scholar 

  • B.I. Lev, P.M. Tomchuk, Phys. Rev. E 59, 591 (1999).

    Article  ADS  Google Scholar 

  • Ch. Loudet, P. Barois, P. Poulin, Nature 407, 611 (2000).

    Article  ADS  Google Scholar 

  • H. Stark, Phys. Rep. 351, 387 (2001).

    Article  ADS  Google Scholar 

  • B.I. Lev, S.B. Chernyshuk, P.M. Tomchuk, H. Yokoyama, Phys. Rev. E 65, 021709 (2002).

    Article  ADS  Google Scholar 

  • I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, S. Žumer, Science 313, 954 (2006).

    Article  ADS  Google Scholar 

  • V.G. Nazarenko, A.B. Nych, B.I. Lev, Phys. Rev. Lett. 87, 075504 (2001).

    Article  ADS  Google Scholar 

  • I.I. Smalyukh, S.B. Chernyshuk, B.I. Lev, A.B. Nych, U.M. Ognista, V.G. Nazarenko, O.D. Lavrentovich, Phys. Rev. Lett. 93, 117801 (2004).

    Article  ADS  Google Scholar 

  • A.B. Nych, U.M. Ognysta, V.M. Pergamenshchik, B.I. Lev, V.G. Nazarenko, I. Muševič, M. Škarabot, O.D. Lavrentovich, Phys. Rev. Lett. 98, 057801 (2007).

    Article  ADS  Google Scholar 

  • I. Muševič, M. Škarabot, D. Babič, N. Osteman, I. Poberaj, V. Nazarenko, A. Nych, Phys. Rev. Lett. 93, 187801 (2004).

    Article  ADS  Google Scholar 

  • M. Yada, J. Yamamoto, H. Yokoyama, Phys. Rev. Lett. 92, 185501 (2004).

    Article  ADS  Google Scholar 

  • I.I. Smalyukh et al. , Appl. Phys. Lett. 86, 021913 (2005).

    Article  Google Scholar 

  • I. Smalyukh, O. Lavrentovich, A. Kuzmin, A. Kachynski, P. Prasad, Phys. Rev. Lett. 95, 157801 (2005).

    Article  ADS  Google Scholar 

  • J. Kotar, M. Vilfan, N. Osteman, D. Babič, M. Čopič, I. Poberaj, Phys. Rev. Lett. 96, 207801 (2006).

    Article  ADS  Google Scholar 

  • P. de Gennes, J. Prost, The Physics of Liquid Crystal (Clarendon, Oxford, 1993).

  • H. Kleinert, Gauge Fields in Condensed Matter (World Scietific, Singapore, 1989).

  • P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).

  • D. Petty, T.C. Lubensky, D.R. Link, Liq. Cryst. 25, 579 (1998).

    Article  Google Scholar 

  • M. Kleman, O.D. Lavrentovich, Soft Matter Physics (Springer, New York, 2003).

  • A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics (Pergamon Press, Oxford, 1972).

  • L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

  • V.M. Pergamenshchik, V.O. Uzunova, to be published in Phys. Rev. E 76 (2007).

  • V.M. Pergamenshchik, V.Ya. Gayvoronsky, S.V. Yakunin, R.M. Vasjuta, V.G. Nazarenko, O.D. Lavrentovich, Mol. Cryst. Liq. Cryst. 454, 145 (2006).

    Article  Google Scholar 

  • V.M. Pergamenshchik, V.Ya. Gayvoronsky, S.V. Yakunin, R.M. Vasjuta, V.G. Nazarenko, O.D. Lavrentovich, Funct. Mater. 13, 681 (2006) ISSN 1027-5495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Uzunova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pergamenshchik, V., Uzunova, V. Elastic charge density representation of the interaction via the nematic director field. Eur. Phys. J. E 23, 161–174 (2007). https://doi.org/10.1140/epje/i2006-10169-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10169-x

PACS.

Navigation