Skip to main content
Log in

Temperature dependence of the effective anchoring energy for a nematic-ferroelectric interface

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Specific features of the anisotropic interaction between a nematic mixture and a polar surface of a ferroelectric triglycine sulfate crystal have been studied over a wide temperature range including the substrate's Curie point Tc. The mixture was composed of two nematic liquid crystals, 60% of p-methoxybenzylidene-p-n-butylaniline (MBBA) and 40% of p-ethoxybenzylidene-p-n-butylaniline (EBBA), and doped with a small amount of a dichroic dye. The temperature dependence of the polarized components of optical density Dj of the dye absorption band for the nematic and isotropic phases of the MBBA+EBBA mixture has been obtained using polarization optic techniques. The temperature-induced structural changes in the nematic layer near Tc were found to be related to the changes in the orientational part of the tensor order parameter Qik. The experimental data have been interpreted using the model, in which the dispersive van der Waals forces of the substrate stabilize the planar orientation of the nematic in the bulk competing with the short-range anchoring forces in the vicinity of Tc. At the same time, the anisotropic part of the surface energy has two terms with the orthogonal easy axes. The nature of the surface electric field and its effect on the director alignment at the interface have been clarified. Taking into account the known relation between anchoring strength and the nematic order parameter, the effective anchoring energy weff for the studied system has been determined as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

  2. L.M. Blinov, V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).

  3. L. Komitov, J. Soc. Inf. Display 11, 437 (2003).

    Article  Google Scholar 

  4. B. Jerome, Rep. Prog. Phys. 54, 391 (1991).

    Article  ADS  Google Scholar 

  5. G. Ryschenkow, M. Kleman, J. Chem. Phys. 64, 404 (1976).

    Article  ADS  Google Scholar 

  6. J.D. Parsons, Phys. Rev. Lett. 41, 877 (1978).

    Article  ADS  Google Scholar 

  7. G. Barbero, G. Durand, in Liquid Crystals in Complex Geometries, edited by G.Ph. Crawford, S. Zumer (Taylor & Francis, London, 1996)

  8. L.I. Dontzova, N.A. Tikhomirova, L.A. Shuvalov, Ferroelectrics 97, 87 (1989).

    Google Scholar 

  9. M. Glogarova, G. Durand, J. Phys. (Paris) 49, 1575 (1988).

    Google Scholar 

  10. V.A. Gunyakov, A.M. Parshin, V.F. Shabanov, Solid State Commun. 105, 761 (1998).

    Article  Google Scholar 

  11. J.F. Hubbard, J. Mater. Chem$.$ 9, 375 (1999).

    Article  MathSciNet  Google Scholar 

  12. E.M. Aver'yanov, V.G. Rumyantsev, V.M. Muratov, Opt. Spectrosc. 69, 128 (1990).

    ADS  Google Scholar 

  13. V.A. Gunyakov, J. Opt. Technol. 64, 483 (1997).

    ADS  Google Scholar 

  14. A.M. Parshin, V.A. Gunyakov, V.F. Shabanov, JETP Lett$.$ 76, 299 (2002).

    Article  ADS  Google Scholar 

  15. A.V. Ivashchenko, V.G. Rumyantsev, Mol. Cryst. Liq. Cryst. A 150, 1 (1987).

    Google Scholar 

  16. H. Inoue, Bull. Chem. Soc. Jpn. 45, 1018 (1972).

    Article  Google Scholar 

  17. A. Pines, J.J. Chang, Phys. Rev. A 10, 946 (1974).

    Article  ADS  Google Scholar 

  18. J.S. Prasad, J. Chem. Phys$.$ 65, 941 (1976).

    Article  ADS  Google Scholar 

  19. E.M. Aver'yanov, Local Field Effects in Optics of Liquid Crystals (Nauka, Novosibirsk, 1999).

  20. M.F. Vuks, Electrical and Optical Properties of Molecules and Condensed Matters (Leningrad University Publishing House, Leningrad, 1984).

  21. J. Etxebarria, J. Ortega, T. Breczweski, J. Phys.: Condens. Matter. 4, 6851 (1992).

    Article  ADS  Google Scholar 

  22. E.M. Aver'yanov, A.N. Primak, Opt. Spectrosc. 61, 1040 (1986).

    Google Scholar 

  23. H.A. van Sprang, R.G. Aartsen, J. Appl. Phys$.$ 56, 251 (1984).

    Article  ADS  Google Scholar 

  24. N.A. Tikhomirova, Sov. Phys. Crystallogr$.$ 23, 701 (1978).

    Google Scholar 

  25. R.N. Thurston, J. Appl. Phys$.$ 56, 263 (1984).

    Article  ADS  Google Scholar 

  26. S. Hoshino, Phys. Rev. 107 1255 (1957).

  27. N.A. Tikhomirova, Phys. Solid State 28, 3319 (1986).

    Google Scholar 

  28. M.E. Lines, A.M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

  29. U. Kuhnau, Phys. Rev. E 59, 578 (1999).

    Article  ADS  Google Scholar 

  30. Z.Yu. Gotra, Indicated Devices on Liquid Crystals (Sov. Radio, Moscow, 1980).

  31. A.G. Petrov, A. Derzhanski, Mol. Cryst. Liq. Cryst. Lett. 41, 41 (1977).

    MATH  Google Scholar 

  32. M.A. Osipov, T.J. Sluckin, S.J. Cox, Phys. Rev. E 55, 464 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Rosenblatt, J. Phys. 45, 1087 (1984).

    Google Scholar 

  34. L.M. Blinov, A.Yu. Kabaenkov, Sov. Phys. JETP 66, 1002 (1987).

    Google Scholar 

  35. V.A. Gunyakov, A.M. Parshin, V.F. Shabanov, Liq. Cryst. 33, 645 (2006).

    Article  Google Scholar 

  36. E. Dubois-Violette, P.G. de Gennes, J. Phys. Lett. 36, L-255 (1975).

    Google Scholar 

  37. K.H. Yang, C. Rosenblatt, Appl. Phys. Lett. 43, 62 (1983).

    Article  ADS  Google Scholar 

  38. H. Yokoyama, H.A. van Sprang, J. Appl. Phys. 57, 4520 (1985).

    Article  ADS  Google Scholar 

  39. M. Nobili, G. Durand, Phys. Rev. A 46, R6174 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gunyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunyakov, V.A., Parshin, A.M. & Shabanov, V.F. Temperature dependence of the effective anchoring energy for a nematic-ferroelectric interface. Eur. Phys. J. E 20, 467–473 (2006). https://doi.org/10.1140/epje/i2006-10037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10037-9

PACS.

Navigation