Skip to main content
Log in

Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The spherical surface is spatially discretized with triangular lattices to numerically calculate the Laplace-Beltrami operator contained in the self-consistent field theory (SCFT) equations using a finite volume method. Based on this method we have developed a spherical alternating-direction implicit (ADI) scheme for the first time to help extend real-space implementation of SCFT in 2D flat space to the surface of the sphere. By using this method, we simulate the equilibrium microphase separation morphology of block copolymers including AB diblocks, ABC linear triblocks and ABC star triblock copolymers occurred on the spherical surface. In general, two classes of microphase separation morphologies such as striped patterns for compositionally symmetric block copolymers and spotted patterns for asymmetric compositions have been found. In contrast to microphase separation morphology in 2D flat space, the geometrical characteristics of a sphere has a large influence on the self-assembled morphology. For striped patterns, several of spiral-form and ring-form patterns are found by changing the ratio of the radius of a sphere to the averaging width of the stripes. The specific pattern such as the striped and spotted pattern with intrinsic dislocations or defects stems from formed periodic patterns due to microphase separation of block copolymers arranged on the curved surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Jackson, J.W. Myerson, F. Stellacci, Nature Mater. 3, 330 (2004).

    Article  Google Scholar 

  2. Y.Y. Wu, G.S. Cheng, K. Katsov, S.W. Sides, J.F. Wang, J. Tang, G.H. Fredrickson, M. Moskovits, G.D. Stucky, Nature Mater. 3, 816 (2004).

    Article  Google Scholar 

  3. H. Yabu, T. Higuchi, M. Shimomura, Adv. Mater. 17, 2062 (2005).

    Article  Google Scholar 

  4. G.J.A. Sevink, A.V. Zvelindovsky, J.G.E.M. Fraaije, H.P. Huinink, J. Chem. Phys. 115, 8226 (2001).

    Article  ADS  Google Scholar 

  5. H.P. Huinink, J.C.M. Brokken-Zijp, M.A. van Dijk, G.J.A. Sevink, J. Chem. Phys. 112, 2452 (2000).

    Article  ADS  Google Scholar 

  6. M.A. van Dijk, R. van den Berg, Macromolecules 28, 6773 (1995).

    Article  Google Scholar 

  7. C. Varea, J.L. Aragon, R.A. Barrio, Phys. Rev. E 60, 4588 (1999).

    Article  ADS  Google Scholar 

  8. Y. Jiang, T. Lookman, A. Saxena, Phys Rev. E 61, R57 (2000).

  9. Y. Jiang, T. Lookman, A. Saxena, Biophys. J. 78, 182A (2000).

    Google Scholar 

  10. P. Tang, F. Qiu, H.D. Zhang, Y.L. Yang, Phys. Rev. E 72, 016710 (2005).

    Article  ADS  Google Scholar 

  11. F. Drolet, G.H. Fredrickson, Phys. Rev. Lett. 83, 4317 (1999).

    Article  ADS  Google Scholar 

  12. F. Drolet, G.H. Fredrickson, Macromolecules 34, 5317 (2001).

    Article  Google Scholar 

  13. P. Tang, F. Qiu, H.D. Zhang, Y.L. Yang, Phys. Rev. E 69, 031803 (2004).

    Article  ADS  Google Scholar 

  14. P. Tang, F. Qiu, H.D. Zhang, Y.L. Yang, J. Phys. Chem. B 108, 8434 (2004).

    Article  Google Scholar 

  15. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, England, 1989).

  16. D.R. Nelson, T. Piran, S. Weinberg, Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 1989).

  17. E.J. Helfand, J. Chem. Phys 62, 999 (1975).

    Article  ADS  Google Scholar 

  18. S.F. Edwards, Proc. Phys. Soc. London 85, 613 (1965).

    Article  MATH  Google Scholar 

  19. M.W. Matsen, M.Schick, Phys. Rev. Lett. 72, 2660 (1994).

    Article  ADS  Google Scholar 

  20. J.R. Baumgardner, P.O. Frederickson, SIAM J. Numer. Anal. 22, (1985) 1107.

    Google Scholar 

  21. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003).

    Article  ADS  Google Scholar 

  22. T. Kohyama, D.M. Kroll, G. Gompper, Phys. Rev. E 68, 061905 (2003).

    Article  ADS  Google Scholar 

  23. M. Meyer, VisMath Proceedings, Berlin, Germany, 2002, http://multries.caltech.edu/pubsd/ diffGeorOps.pdf.

  24. M.W. Matsen, F.S. Bates, Macromolecules 29, 1091 (1996).

    Article  Google Scholar 

  25. J. Gomatam, F. Amdjadi, Phys. Rev. E 56, 3913 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Bowick, A. Cacciuto, D.R. Nelson, A. Travesset, Phys. Rev. Lett. 89, 185502 (2002).

    Article  ADS  Google Scholar 

  27. J.J. Thomson, Philos Mag. 7, 237 (1904).

    MATH  MathSciNet  Google Scholar 

  28. D.R. Nelson, Nano Lett. 2, 1125 (2002).

    Article  Google Scholar 

  29. T. Stehle, S.J. Gamblin, Y.W. Yan, S.C. Harrison, Structure 4, 165 (1996).

    Article  Google Scholar 

  30. M. Fialkowski, A. Bitner, B.A. Grzykowski, Nature Materials 4, 93 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.F., Fan, J., Zhang, H.D. et al. Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory. Eur. Phys. J. E 20, 449–457 (2006). https://doi.org/10.1140/epje/i2006-10035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10035-y

PACS.

Navigation