Skip to main content
Log in

Bubbles and denaturation in DNA

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The local opening of DNA is an intriguing phenomenon from a statistical-physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code cannot take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic models, like the Peyrard-Bishop-Dauxois (PBD) model, have fairly accurately reproduced some experimental denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence, tempting to see whether these models could be used to predict the biological activity of DNA. In a previous study, we introduced a method that allows to obtain very accurate results on this subject, which showed that some previous claims in this direction, based on molecular-dynamics studies, were premature. This could either imply that the present PBD model should be improved or that biological activity can only be predicted in a more complex framework that involves interactions with proteins and super helical stresses. In this article, we give a detailed description of the statistical method introduced before. Moreover, for several DNA sequences, we give a thorough analysis of the bubble-statistics as a function of position and bubble size and the so-called l-denaturation curves that can be measured experimentally. These show that some important experimental observations are missing in the present model. We discuss how the present model could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Choi, Nucl. Acid Res. 32, 1584 (2004).

    Article  Google Scholar 

  2. G. Kalosakas, Europhys. Lett. 68, 127 (2004).

    Article  ADS  Google Scholar 

  3. T.S. van Erp, S. Cuesta-López, J.-G. Hagmann, M. Peyrard, Phys. Rev. Lett. 95, 218104 (2005).

    Article  ADS  Google Scholar 

  4. R.B. Inman, R.L. Baldwin, J. Mol. Biol. 8, 452 (1964).

    Article  Google Scholar 

  5. R.M. Wartell, A.S. Benight, Phys. Rep. 126, 67 (1985).

    Article  ADS  Google Scholar 

  6. U. Dornberger, M. Leijon, H. Fritzsche, J. Biol. Chem. 274, 6957 (1999).

    Article  Google Scholar 

  7. H. Urabe, Y. Tominaga, Biopolymers 21, 2477 (1982).

    Article  Google Scholar 

  8. L. Movileanu, J.M. Benevides, G.J. Thomas, Biopolymers 63, 181 (2002).

    Article  Google Scholar 

  9. H. Grimm, A. Rupprecht, in Nonlinear Excitations in Biomolecules, Les Editions de Physique, edited by M. Peyrard (Springer-Verlag, Berlin, 1995), p. 101.

  10. G. Altan-Bonnet, A. Libchaber, O. Krichevsky, Phys. Rev. Lett. 90, 138101 (2003).

    Article  ADS  Google Scholar 

  11. M.Y. Azbel, Phys. Rev. A 20, 1671 (1979).

    Article  ADS  Google Scholar 

  12. J. Santa Lucia jr, Proc. Natl. Acad. Sci. U.S.A. 95, 1460 (1998).

    Article  ADS  Google Scholar 

  13. D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966).

    Article  ADS  Google Scholar 

  14. C. Kittel, Am. J. Phys. 37, 917 (1969).

    Article  ADS  Google Scholar 

  15. M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989).

    Article  ADS  Google Scholar 

  16. T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, R44 (1993).

  17. A. Campa, A. Giansanti, Phys. Rev. E 58, 3585 (1998).

    Article  ADS  Google Scholar 

  18. C.J. Benham, Proc. Natl. Acad. Sci. U.S.A. 90, 29995 (1993).

    Article  Google Scholar 

  19. C.J. Benham, J. Mol. Biol. 255, 425 (1996).

    Article  Google Scholar 

  20. R.M. Fye, C.J. Benham, Phys. Rev. E 59, 3408 (1999).

    Article  ADS  Google Scholar 

  21. C.J. Benham, C.-P. Bi, J. Comput. Biol. 11, 519 (2004).

    Article  Google Scholar 

  22. C.-P. Bi, C.J. Benham, Bioinformatics 20, 1477 (2004).

    Article  Google Scholar 

  23. A. Montrichok, G. Gruner, G. Zocchi, Europhys. Lett. 62, 452 (2003).

    Article  ADS  Google Scholar 

  24. Y. Zheng, A. Montrichok, G. Zocchi, J. Mol. Biol. 339, 67 (2004).

    Article  Google Scholar 

  25. Y. Zheng, A. Montrichok, G. Zocchi, Phys. Rev. Lett. 91, 148101 (2003).

    Article  ADS  Google Scholar 

  26. M. Peyrard, T. Dauxois, Math. Comput. Simul. 40, 305 (1996).

    Article  Google Scholar 

  27. M. Joyeux, S. Buyukdagli, Phys. Rev. E 72, 051902 (2005).

    Article  ADS  Google Scholar 

  28. A. Campa, A. Giansanti, J. Biol. Phys. 24, 141 (1999).

    Article  Google Scholar 

  29. L.A. Marky, K.J. Breslauer, Biopolymers 21, 2185 (1982).

    Article  Google Scholar 

  30. K.J. Breslauer, R. Frank, H. Blocker, L.A. Marky, Proc. Natl. Acad. Sci. U.S.A. 83, 3746 (1986).

    Article  ADS  Google Scholar 

  31. J. SantaLucia, H.T. Allawi, P.A. Seneviratne, Biochemistry 35, 3555 (1996).

    Article  Google Scholar 

  32. R.L. Ornstein, R. Rein, D.L. Breen, R.D. Macelroy, Biopolymers 17, 2341 (1978).

    Article  Google Scholar 

  33. W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, Berlin, 1984).

  34. P. Mignon, S. Loverix, J. Steyaert, P. Geerlings, Nucl. Acid Res. 33, 1779 (2005).

    Article  ADS  Google Scholar 

  35. P. Hobza, J. Sponer, Chem. Rev. 99, 3247 (1999).

    Article  Google Scholar 

  36. J. Sponer, J. Leszczynski, P. Hobza, Theochem-J. Mol. Struct. 573, 43 (2001).

    Article  Google Scholar 

  37. M. Peyrard, Nonlinearity 17, R1 (2004).

  38. N. Theodorakopoulos, M. Peyrard, Phys. Rev. Lett. 85, 6 (2000).

    Article  ADS  Google Scholar 

  39. T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, 684 (1993).

    Article  ADS  Google Scholar 

  40. S. Ares, N.K. Voulgarakis, K.O. Rasmussen, A.R. Bishop, Phys. Rev. Lett. 94, 035504 (2005).

    Article  ADS  Google Scholar 

  41. Y. l Zhang, W.-M. Zheng, J.-X. Liu, Y. Z. Chen, Phys. Rev. E 56, 7100 (1997).

    Article  ADS  Google Scholar 

  42. R.A. Neher, U. Gerland, Phys. Rev. E 73, 030902 (2006).

    Article  ADS  Google Scholar 

  43. G. Pólya, Math. Ann. 84, 149 (1921).

    Article  MATH  MathSciNet  Google Scholar 

  44. S. Buyukdagli, M. Sanrey, M. Joyeux, Chem. Phys. Lett. 419, 434 (2006).

    Article  ADS  Google Scholar 

  45. K.S. Murakami, Science 296, 1285 (2002).

    Article  ADS  Google Scholar 

  46. Z. Rapti, A. Smerzi, K.O. Rasmussen, A.R. Bishop, Europhys. Lett. 74, 540 (2006).

    Article  ADS  Google Scholar 

  47. Z. Rapti, Phys. Rev. E 73, 051902 (2006).

    Article  ADS  Google Scholar 

  48. D.J. Galas, M. Eggert, M.S. Waterman, J. Mol. Biol. 186, 117 (1985).

    Article  Google Scholar 

  49. S. Cuesta-López, in preparation.

  50. G. Boole, J.F. Moulton, A Treatise on the Calculus of Finite Differences, 2nd rev. ed. (Dover Publications, New York, 1960).

  51. A.M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972).

  52. G.M. Torrie, J.P. Valleau, Chem. Phys. Lett. 28, 578 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Erp, T.S., Cuesta-López, S. & Peyrard, M. Bubbles and denaturation in DNA. Eur. Phys. J. E 20, 421–434 (2006). https://doi.org/10.1140/epje/i2006-10032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10032-2

PACS.

Navigation