Skip to main content
Log in

Brownian motion near a liquid-like membrane

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamics of a tracer molecule near a fluid membrane is investigated, with particular emphasis given to the interplay between the instantaneous position of the particle and membrane fluctuations. It is found that hydrodynamic interactions creates memory effects in the diffusion process. The random motion of the particle is then shown to cross over from a “bulk” to a “surface” diffusive mode, in a way that crucially depends on the elastic properties of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1998).

  2. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).

    Article  ADS  Google Scholar 

  3. F. Amblard, A.C. Maggs, B. Yurke, A.N. Pargellis, S. Leibler, Phys. Rev. Lett. 77, 4470 (1996).

    Article  ADS  Google Scholar 

  4. H. Lodish, A. Berk, S.L. Zipurski, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology (Freeman & Company, New York, 2002).

  5. A. Feng Xie, S. Granick, Nature Mater. 1, 129 (2002).

    Article  ADS  Google Scholar 

  6. C. Fradin, A. Abu-Arish, R. Granek, M. Elbaum, Biophys. J. 84, 2005 (2003).

    Article  Google Scholar 

  7. Y. Kimura, T. Mori, A. Yamamoto, D. Mizuno, J. Phys.: Condens. Matter 17, S2937 (2005).

  8. J. Yamamoto, H. Tanaka, Nature Mater. 4, 75 (2005).

    Article  ADS  Google Scholar 

  9. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Dordrecht, 1991).

  10. J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).

  11. K.H. Lan, N. Ostrowsky, D. Sornette, Phys. Rev. Lett. 57, 17 (1986).

    Article  ADS  Google Scholar 

  12. L.P. Faucheux, A.J. Libchaber, Phys. Rev. E 49, 5158 (1994).

    Article  ADS  Google Scholar 

  13. A. Pralle, E.-L. Florin, E.H.K. Stelzer, J.H.K. Hörber, Appl. Phys. A 66, S71 (1998).

  14. E.R. Dufresne, T.M. Squires, M.P. Brenner, D.G. Grier, Phys. Rev. Lett. 85, 3317 (2000).

    Article  ADS  Google Scholar 

  15. S.H. Lee, R.S. Chadwick, L.G. Leal, J. Fluid Mech. 93, 705 (1979).

    Article  MATH  ADS  Google Scholar 

  16. E. Lauga, T.M. Squires, Phys. Fluids 17, 103102 (2005).

    Article  ADS  Google Scholar 

  17. B.U. Felderhof, J. Chem. Phys. 123, 184903 (2005).

    Article  ADS  Google Scholar 

  18. U. Seifert, S.A. Langer, Europhys. Lett. 23, 71 (1993).

    ADS  Google Scholar 

  19. U. Seifert, Adv. Phys. 46, 13 (1997).

    Article  ADS  Google Scholar 

  20. Several physical realizations of this confining potential are possible: they may either stem from steric interactions (bounding wall, intermembrane interactions in a lamellar phase), or they may describe the effect of the underlying cytoskeletal network in living cells (see, for instance, J.-B. Fournier, D. Lacoste, E. Raphael, Phys. Rev. Lett. 92, 018102 (2004)).

    Article  Google Scholar 

  21. A.G. Zilman, R. Granek, Phys. Rev. Lett. 77, 4788 (1996).

    Article  ADS  Google Scholar 

  22. For a review, see S.-M. Yang, L.G. Leal, Int. J. Multiphase Flow 16, 597 (1990).

    Article  Google Scholar 

  23. A. Yeung, E. Evans, J. Phys. II 5, 1501 (1995).

    Article  Google Scholar 

  24. S.A. Shkulipa, W.K. den Otter, W.J. Briels, Phys. Rev. Lett. 96, 178302 (2006).

    Article  ADS  Google Scholar 

  25. P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975).

    Article  ADS  Google Scholar 

  26. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992).

  27. Note that at very high frequencies, inertia of the liquid should also be accounted for. Indeed, it is known that this contribution is a source of coloured noise, see, for instance, landau1. Here however, we consider time scales comparable to $\tau_m$, corresponding to frequencies in the kH range. Consequently, this effect can safely be neglected.

  28. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, Nonequilibrium Statisticl Physics (Springer Verlag, Berlin, 1985).

  29. D. Bedeaux, P. Mazur, Physica 76, 247 (1974).

    Article  MathSciNet  Google Scholar 

  30. Incidentally, we remark that anomalous diffusion has also been predicted for a particle bound to a fluctuating membrane, see R. Granek, J. Klafter, Europhys. Lett. 56, 15 (2001).

    Article  Google Scholar 

  31. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics Part 2, Vol. 9 of the Course of Theoretical Physics (Pergamon Press, Oxford, 1980) Chapt. IX.

  32. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edition, Vol. 6 of the Course of Theoretical Physics (Pergamon Press, Oxford, 1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickel, T. Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20, 379–385 (2006). https://doi.org/10.1140/epje/i2006-10026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10026-0

PACS.

Navigation